MG
Maoguo Gong
Author with expertise in Hyperspectral Image Analysis and Classification
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
40
(5% Open Access)
Cited by:
5,917
h-index:
71
/
i10-index:
337
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks

Maoguo Gong et al.Jun 10, 2015
This paper presents a novel change detection approach for synthetic aperture radar images based on deep learning. The approach accomplishes the detection of the changed and unchanged areas by designing a deep neural network. The main guideline is to produce a change detection map directly from two images with the trained deep neural network. The method can omit the process of generating a difference image (DI) that shows difference degrees between multitemporal synthetic aperture radar images. Thus, it can avoid the effect of the DI on the change detection results. The learning algorithm for deep architectures includes unsupervised feature learning and supervised fine-tuning to complete classification. The unsupervised feature learning aims at learning the representation of the relationships between the two images. In addition, the supervised fine-tuning aims at learning the concepts of the changed and unchanged pixels. Experiments on real data sets and theoretical analysis indicate the advantages, feasibility, and potential of the proposed method. Moreover, based on the results achieved by various traditional algorithms, respectively, deep learning can further improve the detection performance.
0
Citation531
0
Save
0

Change Detection in Synthetic Aperture Radar Images based on Image Fusion and Fuzzy Clustering

Maoguo Gong et al.Oct 11, 2011
This paper presents an unsupervised distribution-free change detection approach for synthetic aperture radar (SAR) images based on an image fusion strategy and a novel fuzzy clustering algorithm. The image fusion technique is introduced to generate a difference image by using complementary information from a mean-ratio image and a log-ratio image. In order to restrain the background information and enhance the information of changed regions in the fused difference image, wavelet fusion rules based on an average operator and minimum local area energy are chosen to fuse the wavelet coefficients for a low-frequency band and a high-frequency band, respectively. A reformulated fuzzy local-information C-means clustering algorithm is proposed for classifying changed and unchanged regions in the fused difference image. It incorporates the information about spatial context in a novel fuzzy way for the purpose of enhancing the changed information and of reducing the effect of speckle noise. Experiments on real SAR images show that the image fusion strategy integrates the advantages of the log-ratio operator and the mean-ratio operator and gains a better performance. The change detection results obtained by the improved fuzzy clustering algorithm exhibited lower error than its preexistences.
0

Multiobjective Immune Algorithm with Nondominated Neighbor-Based Selection

Maoguo Gong et al.Jun 1, 2008
Nondominated Neighbor Immune Algorithm (NNIA) is proposed for multiobjective optimization by using a novel nondominated neighbor-based selection technique, an immune inspired operator, two heuristic search operators, and elitism. The unique selection technique of NNIA only selects minority isolated nondominated individuals in the population. The selected individuals are then cloned proportionally to their crowding-distance values before heuristic search. By using the nondominated neighbor-based selection and proportional cloning, NNIA pays more attention to the less-crowded regions of the current trade-off front. We compare NNIA with NSGA-II, SPEA2, PESA-II, and MISA in solving five DTLZ problems, five ZDT problems, and three low-dimensional problems. The statistical analysis based on three performance metrics including the coverage of two sets, the convergence metric, and the spacing, show that the unique selection method is effective, and NNIA is an effective algorithm for solving multiobjective optimization problems. The empirical study on NNIA's scalability with respect to the number of objectives shows that the new algorithm scales well along the number of objectives.
0

A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images

Jia Liu et al.Dec 22, 2016
We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.
0
Citation387
0
Save
0

A Multiobjective Evolutionary Algorithm Based on Decision Variable Analyses for Multiobjective Optimization Problems With Large-Scale Variables

Xiaoliang Ma et al.Jul 13, 2015
State-of-the-art multiobjective evolutionary algorithms (MOEAs) treat all the decision variables as a whole to optimize performance. Inspired by the cooperative coevolution and linkage learning methods in the field of single objective optimization, it is interesting to decompose a difficult high-dimensional problem into a set of simpler and low-dimensional subproblems that are easier to solve. However, with no prior knowledge about the objective function, it is not clear how to decompose the objective function. Moreover, it is difficult to use such a decomposition method to solve multiobjective optimization problems (MOPs) because their objective functions are commonly conflicting with one another. That is to say, changing decision variables will generate incomparable solutions. This paper introduces interdependence variable analysis and control variable analysis to deal with the above two difficulties. Thereby, an MOEA based on decision variable analyses (DVAs) is proposed in this paper. Control variable analysis is used to recognize the conflicts among objective functions. More specifically, which variables affect the diversity of generated solutions and which variables play an important role in the convergence of population. Based on learned variable linkages, interdependence variable analysis decomposes decision variables into a set of low-dimensional subcomponents. The empirical studies show that DVA can improve the solution quality on most difficult MOPs. The code and supplementary material of the proposed algorithm are available at http://web.xidian.edu.cn/fliu/paper.html .
0

Fuzzy Clustering With a Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images

Maoguo Gong et al.Feb 26, 2013
In this paper, we put forward a novel approach for change detection in synthetic aperture radar (SAR) images. The approach classifies changed and unchanged regions by fuzzy c-means (FCM) clustering with a novel Markov random field (MRF) energy function. In order to reduce the effect of speckle noise, a novel form of the MRF energy function with an additional term is established to modify the membership of each pixel. In addition, the degree of modification is determined by the relationship of the neighborhood pixels. The specific form of the additional term is contingent upon different situations, and it is established ultimately by utilizing the least-square method. There are two aspects to our contributions. First, in order to reduce the effect of speckle noise, the proposed approach focuses on modifying the membership instead of modifying the objective function. It is computationally simple in all the steps involved. Its objective function can just return to the original form of FCM, which leads to its consuming less time than that of some obviously recently improved FCM algorithms. Second, the proposed approach modifies the membership of each pixel according to a novel form of the MRF energy function through which the neighbors of each pixel, as well as their relationship, are concerned. Theoretical analysis and experimental results on real SAR datasets show that the proposed approach can detect the real changes as well as mitigate the effect of speckle noises. Theoretical analysis and experiments also demonstrate its low time complexity.
Load More