HW
H. Wickramasinghe
Author with expertise in Atomic Force Microscopy Techniques
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(25% Open Access)
Cited by:
6,701
h-index:
45
/
i10-index:
91
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Acoustic microscopy with mechanical scanning—A review

C. Quate et al.Jan 1, 1979
Acoustic waves in liquids are known to have wavelengths comparable to that of visible light if the frequency is in the gigahertz range. The phenomena of Brillouin scattering in liquids is based on such waves. In helium near 2 K acoustic waves with a wavelength of 2000 Å were studied some ten years ago at UCLA. It follows from these observations that an imaging system based on acoustic radiation with a resolving power competitive with the optical microscope is within reach if an ideal lens free from aberrations could be found. Such a lens, which was so elusive at the beginning, is now a simple device and it is the basic component in the acoustic microscope that forms the basis for this review. In this article we will establish the characteristic properties of this new instrument. We will review some of the simple properties of acoustic waves and show how a single spherical surface formed at a solid liquid interface can serve as this ideal lens free from aberrations and capable of producing diffraction limited beams. When this is incorporated into a mechanical scanning system and excited with acoustic frequencies in the microwave range images can be recorded with acoustic wavelengths equal to the wavelength of visible light. We will present images that show the elastic properties of specimens selected from the fields of material science, integrated circuits, and cell biology. The information content in these images will often exceed that of the optical micrographs. In the reflection mode we illuminate the smooth surface of a crystalline material with a highly convergent acoustic beam. The reflected field is perturbed in a unique way that is determined by the elastic properties of the reflecting surface and it shows up in the phase of the reflected acoustic field. There is a distinct and characteristic response at the output when the spacing between the object and the lens is varied. This behavior in the acoustic ieflection microscope provides a rather simple and direct means for monitoring the elastic parameters of a solid surface. It is easy to distinguish between different materials, to determine the layer thickness, and to display variations in the elastic constants on a microscopic scale. These features lead us to believe there is a promising future for the field of acoustic microscopy.
1

Tunneling based ten attomolar DNA biosensor

Zahra Mardy et al.Jun 1, 2021
Early-stage detection prevents disease progression and complications in treatment procedures, especially for infectious diseases. This requires rapid and accurate sensing technologies and techniques that remove the need for expensive and time-consuming sample preparation and transfer to the labs and the running of multiple experiments. To that end, point-of-care (POC) testing has been introduced for quick disease diagnostics that enables caregivers to start early treatment, leading to improved health outcomes. Here, we introduce a tunneling current bio-sensing technology based on a metal–insulator–electrolyte junction, which is highly sensitive to charge variations at the insulator–electrolyte interface. The charge variations occur as a response of hybridization of complementary DNA sequences to DNA primers immobilized on the insulator surface. This leads to the label-free detection of as little as tens of DNA molecules or, equivalently, samples with 0.01 fM concentrations. Since the sensing is based on a single terminal measurement of current with respect to a reference electrode, our technology can enable the creation of novel compact medical and portable POC devices for real-time disease detection.
Load More