MH
Madlen Hubert
Author with expertise in Biological Role of Caveolae in Cellular Processes
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
0
h-index:
13
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Lipid accumulation promotes scission of caveolae

Madlen Hubert et al.Jan 22, 2020
+4
N
E
M
Caveolae, bulb-shaped invaginations of the plasma membrane (PM), show distinct behaviors of scission and fusion at the cell surface. Although it is known that caveolae are enriched in cholesterol and sphingolipids, exactly how lipid composition influences caveolae surface stability has not yet been elucidated. Accordingly, we inserted specific lipids into the PM of cells via membrane fusion and studied acute effects on caveolae dynamics. We demonstrate that cholesterol and glycosphingolipids specifically accumulate in caveolae, which decreases their neck diameter and drives their scission from the cell surface. The lipid-induced scission was counteracted by the ATPase EHD2. We propose that lipid accumulation in caveolae generates an intrinsically unstable domain prone to scission if not balanced by the restraining force of EHD2 at the neck. Our work advances the understanding of how lipids contribute to caveolae dynamics, providing a mechanistic link between caveolae and their ability to sense the PM lipid composition.
4

Membrane insertion mechanism of the caveolae coat protein Cavin1

Kangcheng Liu et al.Mar 23, 2021
+13
J
K
K
Abstract Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades and lipid sorting. The caveolae coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modelling to show that Cavin1 inserts into membranes. We establish that initial PI(4,5)P 2 -dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of the HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the co-assembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane. Significance statement Caveolae are cholesterol enriched membrane invaginations coupled to severe muscle and lipid disorders. Their formation is dependent on assembly of the protein Cavin1 at the lipid membrane interface driving membrane curvature. In this work, we dissect the mechanism for how Cavin1 binds and inserts into membranes using a combination of biochemical and biophysical characterization as well as computational modelling. The proposed model for membrane assembly potentiates dynamic switching between shielded and exposed hydrophobic helices used for membrane insertion and clarifies how Cavin1 can drive membrane curvature and the formation of caveolae.