Hybridization of complementary single strands of DNA represents a very effective natural molecular recognition process widely exploited for diagnostic, biotechnology and nanotechnology applications. A common approach relies on the immobilization on a surface of single stranded DNA probes that bind complementary targets in solution. However, despite the deep knowledge on DNA interactions in bulk solution, the modelling of the same interactions on a surface are still challenging and perceived as strongly system-dependent. Here we show that a two dimensional analysis of the kinetics of hybridization, performed at different target concentration and probe surface density by a label-free optical biosensor, reveals peculiar features inconsistent with an ideal Langmuir-like behaviour. We propose a simple non-Langmuir kinetic model accounting for an enhanced electrostatic repulsion originating from the surface immobilization of nucleic acids and for steric hindrance close to full hybridization of the surface probes. The analysis of the kinetic data by the model enables to quantify the repulsive potential at the surface, as well as to retrieve the kinetic parameters of isolated probes. We show that the strength and the kinetics of hybridization at large probe density can be improved by a 3D immobilization strategy of probe strands with a double stranded linker.