AA
Anil Agarwal
Author with expertise in Structure and Function of the Nuclear Pore Complex
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
3,592
h-index:
47
/
i10-index:
95
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology

Kimberly Szymanski et al.Dec 19, 2007
Lipodystrophy is a disorder characterized by a loss of adipose tissue often accompanied by severe hypertriglyceridemia, insulin resistance, diabetes, and fatty liver. It can be inherited or acquired. The most severe inherited form is Berardinelli-Seip Congenital Lipodystrophy Type 2, associated with mutations in the BSCL2 gene. BSCL2 encodes seipin, the function of which has been entirely unknown. We now report the identification of yeast BSCL2 /seipin through a screen to detect genes important for lipid droplet morphology. The absence of yeast seipin results in irregular lipid droplets often clustered alongside proliferated endoplasmic reticulum (ER); giant lipid droplets are also seen. Many small irregular lipid droplets are also apparent in fibroblasts from a BSCL2 patient. Human seipin can functionally replace yeast seipin, but a missense mutation in human seipin that causes lipodystrophy, or corresponding mutations in the yeast gene, render them unable to complement. Yeast seipin is localized in the ER, where it forms puncta. Almost all lipid droplets appear to be on the ER, and seipin is found at these junctions. Therefore, we hypothesize that seipin is important for droplet maintenance and perhaps assembly. In addition to detecting seipin, the screen identified 58 other genes whose deletions cause aberrant lipid droplets, including 2 genes encoding proteins known to activate lipin, a lipodystrophy locus in mice, and 16 other genes that are involved in endosomal–lysosomal trafficking. The genes identified in our screen should be of value in understanding the pathway of lipid droplet biogenesis and maintenance and the cause of some lipodystrophies.
0
Citation570
0
Save
0

Cloning and Expression of Rat cDNA Encoding Corticosteroid 11β-Dehydrogenase

Anil Agarwal et al.Nov 1, 1989
Corticosteroid 11 beta-dehydrogenase (11-DH) catalyzes the conversion of cortisol to the inactive metabolite cortisone. Absence of 11-DH activity leads to a potentially fatal form of childhood hypertension termed apparent mineralocorticoid excess. As a first step in elucidating the molecular basis of this disorder, we isolated and characterized a rat cDNA clone encoding 11-DH. This clone hybridized to a single mRNA species in liver, kidney, and testis RNA but not to RNA from heart. The insert was 1265 base pairs long and included an 861-base pair open reading frame encoding 287 amino acids. A search of sequence databases revealed that 11-DH is identical in about 27% of amino acid residues to ribitol dehydrogenase from Klebsiella and to the product of the nodG gene from the nitrogen-fixing bacterium, Rhizobium meliloti, thus defining a new superfamily of genes encoding dehydrogenases. The 11-DH cDNA was expressed by transfection into Chinese hamster ovary cells under the control of an SV40 promoter. The expressed enzyme mediated both 11 beta-dehydrogenation and the reverse 11-oxoreduction reaction. Southern blot analysis of rat and human DNA suggested that additional genes related to 11-DH exist in both species.
0

The human gene for 11 beta-hydroxysteroid dehydrogenase. Structure, tissue distribution, and chromosomal localization.

Grace Tannin et al.Sep 1, 1991
The Type I (mineralocorticoid) receptor has identical affinities in vitro for cortisol and aldosterone. It has been suggested that the selective role of aldosterone in regulating sodium homeostasis relies on the microsomal enzyme 11 beta-hydroxysteroid dehydrogenase (11-HSD). This enzyme converts cortisol to its inactive metabolite, cortisone, preventing cortisol from binding to the Type I receptor. We have isolated human cDNA clones encoding 11-HSD from a human testis cDNA library by hybridization with a previously isolated rat 11-HSD cDNA clone. The cDNA contains an open reading frame of 876 bases, which predicts a protein of 292 amino acids. The sequence is 77% identical at the amino acid level to rat 11-HSD cDNA. The mRNA is widely expressed, but the level of expression is highest in the liver. Hybridization of the human 11-HSD cDNA to a human-hamster hybrid cell panel localized the single corresponding HSD11 gene to chromosome 1. This gene was isolated from a chromosome 1 specific library using the cDNA as a probe. HSD11 consists of 6 exons and is at least 9 kilobases long. The data developed in this study should be applicable to the study of patients with hypertension due to apparent mineralocorticoid excess, a deficiency in 11-HSD activity.
0
Citation435
0
Save
0

Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia

Anil AgarwalJul 1, 2003
Mandibuloacral dysplasia (MAD; OMIM 248370) is a rare, genetically and phenotypically heterogeneous, autosomal recessive disorder characterized by skeletal abnormalities including hypoplasia of the mandible and clavicles, acro-osteolysis, cutaneous atrophy and lipodystrophy. A homozygous missense mutation, Arg527His, in the LMNA gene which encodes nuclear lamina proteins lamins A and C has been reported in patients with MAD and partial lipodystrophy. We studied four patients with MAD who had no mutations in the LMNA gene. We now show compound heterozygous mutations, Phe361fsX379 and Trp340Arg, in the zinc metalloproteinase ( ZMPSTE24 ) gene in one of the four patients who had severe MAD associated with progeroid appearance and generalized lipodystrophy. ZMPSTE24 is involved in post-translational proteolytic cleavage of carboxy terminal residues of farnesylated prelamin A in two steps to form mature lamin A. Deficiency of Zmpste24 in mice causes accumulation of prelamin A and phenotypic features similar to MAD. The yeast homolog, Ste24, has a parallel role in processing of prenylated mating pheromone a-factor. Since human ZMPSTE24 can also process a-factor when expressed in yeast, we assessed the functional significance of the two ZMPSTE24 mutations in the yeast to complement the mating defect of the haploid MATa yeast lacking STE24 and Ras-converting enzyme 1 ( RCE1 ; another prenylprotein-specific endoprotease) genes. The ZMPSTE24 mutant construct, Phe361fsX379, was inactive in complementing the yeast a-factor but the mutant, Trp340Arg, was partially active compared to the wild type ZMPSTE24 construct. We conclude that mutations in ZMPSTE24 may cause MAD by affecting prelamin A processing.
0
Citation381
0
Save
0

Messenger RNA levels of enzymes involved in glycerolipid synthesis in the brain of the mouse and its alterations in Agpat2-/- and db/db mice.

Lila González-Hódar et al.Apr 3, 2020
Aims: Expression of genes encoding enzymes involved in glycerolipid and monoacylglycerol pathways in specific brain regions is poorly known and its impact in insulin resistance (IR) and type 2 diabetes (T2D) in the brain remains unreported. We determined mRNA levels of enzymes involved in glycerolipid synthesis in different regions of the mouse brain and evaluated their changes in two models of IR and T2D, the Agpat2-/- and Leprdb/db mice. Methods: Cerebral cortex, hypothalamus, hippocampus and cerebellum were dissected from adult Agpat2-/- mice, Leprdb/db mice and their respective wild type littermates. Total RNA was isolated and mRNA abundance was measured by RT-qPCR. Key findings: GPAT1, AGPAT1-4, LIPIN1/2, DGAT1/2 and MOGAT1 mRNAs were detected in all studied brain regions, whereas GPAT2, LIPIN3 and MOGAT2 were undetectable. Abundance of AGPATs, LIPIN1 and DGAT1, was higher in cerebellum and hypothalamus. LIPIN2 and MOGAT1 levels were higher in hypothalamus, and DGAT2 was higher in cortex and hypothalamus. In Agpat2-/- mice, LIPIN1 levels were increased in all the brain regions. By contrast, GPAT1 in cortex and hypothalamus, AGPAT3 in hippocampus and hypothalamus, AGPAT4 in hypothalamus, and MOGAT1 in cortex, hypothalamus and cerebellum were lower in Agpat2-/- mice. Leprdb/db mice showed fewer and milder changes, with increased levels of GPAT1 and LIPIN1 in cerebellum, and AGPAT3 in hypothalamus. Conclusions and Significance: Enzymes of glycerolipids synthesis are differentially expressed across regions of the mouse brain. Two mouse models of IR and T2D have altered gene expression of glycerolipid enzymes in the brain.
0

Gain of function NOTCH3 variants cause familial partial lipodystrophy due to activation of senescence pathways

Abhimanyu Garg et al.Dec 9, 2024
Despite elucidation of the molecular genetic basis of several lipodystrophy syndromes, molecular defects in some ultra-rare subtypes of familial lipodystrophies remain unidentified. We analyzed whole exome sequencing (WES) data of four affected and two unaffected females from an undiagnosed autosomal dominant familial partial lipodystrophy (FPL) pedigree and identified only one novel heterozygous variant, p.Ala1603Tyr in NOTCH3 meeting the filtering criteria. Further analysis of WES data of 222 unexplained FPL patients identified two unrelated FPL patients with novel heterozygous, p.Cys1600Tyr and p.Gln1552Pro, NOTCH3 variants. All variants were clustered in the heterodimerization domain of the negative regulatory region of NOTCH3. RNA-Seq and proteomics analysis of skin fibroblasts revealed significantly higher RNA and protein expression of NOTCH3 and activation of widespread senescence pathways in the FPL patients versus controls. NOTCH3 is highly expressed in adipose tissue and plays many crucial roles in developmental patterning, cell fate decisions, regulation of cell survival and proliferation. We conclude that gain-of-function missense variants in the negative regulatory region of NOTCH3 cause a novel subtype of FPL by activation of senescence pathways. This novel variety of FPL should be considered for non-obese patients with early- or childhood-onset diabetes mellitus.