CR
Curtis Richardson
Author with expertise in Carbon Dynamics in Peatland Ecosystems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
2,572
h-index:
61
/
i10-index:
150
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Long-Term Transformation and Fate of Manufactured Ag Nanoparticles in a Simulated Large Scale Freshwater Emergent Wetland

Gregory Lowry et al.Apr 1, 2012
Transformations and long-term fate of engineered nanomaterials must be measured in realistic complex natural systems to accurately assess the risks that they may pose. Here, we determine the long-term behavior of poly(vinylpyrrolidone)-coated silver nanoparticles (AgNPs) in freshwater mesocosms simulating an emergent wetland environment. AgNPs were either applied to the water column or to the terrestrial soils. The distribution of silver among water, solids, and biota, and Ag speciation in soils and sediment was determined 18 months after dosing. Most (70 wt %) of the added Ag resided in the soils and sediments, and largely remained in the compartment in which they were dosed. However, some movement between soil and sediment was observed. Movement of AgNPs from terrestrial soils to sediments was more facile than from sediments to soils, suggesting that erosion and runoff is a potential pathway for AgNPs to enter waterways. The AgNPs in terrestrial soils were transformed to Ag2S (∼52%), whereas AgNPs in the subaquatic sediment were present as Ag2S (55%) and Ag-sulfhydryl compounds (27%). Despite significant sulfidation of the AgNPs, a fraction of the added Ag resided in the terrestrial plant biomass (∼3 wt % for the terrestrially dosed mesocosm), and relatively high body burdens of Ag (0.5–3.3 μg Ag/g wet weight) were found in mosquito fish and chironomids in both mesocosms. Thus, Ag from the NPs remained bioavailable even after partial sulfidation and when water column total Ag concentrations are low (<0.002 mg/L).
0
Paper
Citation370
0
Save
0

Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario

Benjamin Colman et al.Feb 27, 2013
A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg−1 soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles.
0
Citation314
0
Save
0

Ecological restoration of rich fens in Europe and North America: from trial and error to an evidence‐based approach

Leon Lamers et al.Apr 4, 2014
Fens represent a large array of ecosystem services, including the highest biodiversity found among wetlands, hydrological services, water purification and carbon sequestration. Land-use change and drainage has severely damaged or annihilated these services in many parts of North America and Europe; restoration plans are urgently needed at the landscape level. We review the major constraints on the restoration of rich fens and fen water bodies in agricultural areas in Europe and disturbed landscapes in North America: (i) habitat quality problems: drought, eutrophication, acidification, and toxicity, and (ii) recolonization problems: species pools, ecosystem fragmentation and connectivity, genetic variability, and invasive species; and here provide possible solutions. We discuss both positive and negative consequences of restoration measures, and their causes. The restoration of wetland ecosystem functioning and services has, for a long time, been based on a trial-and-error approach. By presenting research and practice on the restoration of rich fen ecosystems within agricultural areas, we demonstrate the importance of biogeochemical and ecological knowledge at different spatial scales for the management and restoration of biodiversity, water quality, carbon sequestration and other ecosystem services, especially in a changing climate. We define target processes that enable scientists, nature managers, water managers and policy makers to choose between different measures and to predict restoration prospects for different types of deteriorated fens and their starting conditions.
0
Paper
Citation224
0
Save
0

Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management

Sheel Bansal et al.Jun 21, 2019
Typha is an iconic wetland plant found worldwide. Hybridization and anthropogenic disturbances have resulted in large increases in Typha abundance in wetland ecosystems throughout North America at a cost to native floral and faunal biodiversity. As demonstrated by three regional case studies, Typha is capable of rapidly colonizing habitats and forming monodominant vegetation stands due to traits such as robust size, rapid growth rate, and rhizomatic expansion. Increased nutrient inputs into wetlands and altered hydrologic regimes are among the principal anthropogenic drivers of Typha invasion. Typha is associated with a wide range of negative ecological impacts to wetland and agricultural systems, but also is linked with a variety of ecosystem services such as bioremediation and provisioning of biomass, as well as an assortment of traditional cultural uses. Numerous physical, chemical, and hydrologic control methods are used to manage invasive Typha, but results are inconsistent and multiple methods and repeated treatments often are required. While this review focuses on invasive Typha in North America, the literature cited comes from research on Typha and other invasive species from around the world. As such, many of the underlying concepts in this review are relevant to invasive species in other wetland ecosystems worldwide.
0
Paper
Citation184
0
Save
0

Vegetation and Microbes Interact to Preserve Organic Matter in Wooded Peatlands

Hongjun Wang et al.Apr 13, 2020
Peatlands have persisted as massive carbon sinks over millennia, even during past periods of climate change. The commonly accepted theory of abiotic controls (mainly anoxia and low temperature) over carbon decomposition cannot explain how vast low-latitude wooded peatlands consistently accrete peat under warm and seasonally unsaturated conditions. Similarly, that theory cannot accurately project the decomposition rate in boreal peatlands where warming and drought have decreased Sphagnum and increased shrub expansion. Here, by comparing composition and ecological traits of microbes between Sphagnum- and shrub-dominated peatlands, we present a previously unrecognized natural course that curbs carbon loss against climate change. Slow-growing microbes decisively dominate the studied wooded peatlands, concomitant with plant-induced, high recalcitrant carbon and phenolics. The slow-growing microbes inherently metabolize organic matter slowly. However, the fast-growing microbes that dominate our Sphagnum site (most boreal peatlands as well) decomposed labile carbon >30 times faster than the slow-growing microbes. We show that the high-phenolic shrub/tree induced shifts in microbial composition may compensate for positive effects of temperature and/or drought on metabolism over time in peatlands. This biotic self-sustaining process that modulates abiotic controls on carbon cycling may help better project long-term climate-carbon feedbacks in peatlands.### Competing Interest StatementThe authors have declared no competing interest.
0

Water quality and wetland vegetation responses to water level variations in a university stormwater reuse reservoir: Nature-based approaches to campus water sustainability

Curtis Richardson et al.Jul 9, 2024
In response to climate-driven water shortages, Duke University in 2014 constructed a water reuse reservoir and wetland complex (Pond) to capture urban stormwater and recycle water to provide campus cooling and reduce downstream loading of nutrients and sediment into Jordan Lake, a regional water supply. We postulated that even with significant water level changes due to withdrawals, the Pond would function to reduce downstream nutrients and sediment once wetland plants became established in the littoral zone. Throughout the project (2015–2021), baseflow nutrient concentrations downstream decreased, with Unfiltered Total Nitrogen (UTN) falling by 44 % and Unfiltered Total Phosphorus (UTP) by 50 %. Storm mean concentrations decreased by 31 % for UTN, 54 % for UTP, and 72 % for Total Suspended Solids (TSS). The annual reductions in mass fluxes (UTN, UTP, and TSS) were between 58 and 85 % across a range of storm intensities. Regardless of water level, temperature, pH, and oxygen concentrations downstream were not significantly changed. Between 2015 and 2020, a littoral survey of planted and naturally introduced species showed that wetter years resulted in a greater number of species across a gradient of three inundation zones (i.e., moist, wet, and aquatic). Conversely, dryer years resulted in fewer species across overlapping zones. The dominant plants that successfully colonized the Pond are all obligate wetland species despite the Pond's highly variable water depths and periods of inundation. The final plant populations were dominated by invasive native species supporting the self-design theory of plant succession as nearly half of the original planted species died. The reuse Pond design (pond-wetland complex) showed the capability of using stormwater runoff for campus cooling while improving water quality services and providing habitat for wetland plants. Thus, campuses with watershed runoff capture capability should consider a nature-based recycling approach as part of their water sustainability program.