VC
Valéry Combes
Author with expertise in Exosome Biology and Function in Intercellular Communication
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
1,385
h-index:
44
/
i10-index:
77
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant

Valéry Combes et al.Jul 1, 1999
Microparticles (MPs) resulting from vesiculation of platelets and other blood cells have been extensively documented in vitro and have been found in increased numbers in several vascular diseases, but little is known about MPs of endothelial origin. The aim of this study was to analyze morphological, immunological, and functional characteristics of MPs derived from human umbilical vein endothelial cells (HUVECs) stimulated by TNF, and to investigate whether these MPs are detectable in healthy individuals and in patients with a prothrombotic coagulation abnormality. Electron microscopy evidenced bleb formation on the membrane of TNF-stimulated HUVECs, leading to increased numbers of MPs released in the supernatant. These endothelial microparticles (EMPs) expressed the same antigenic determinants as the corresponding cell surface, both in resting and activated conditions. MPs derived from TNF-stimulated cells induced coagulation in vitro, via a tissue factor/factor VII-dependent pathway. The expression of E-selectin, ICAM-1, alphavbeta3, and PECAM-1 suggests that MPs have an adhesion potential in addition to their procoagulant activity. In patients, labeling with alphavbeta3 was selected to discriminate EMPs from those of other origins. We provide evidence that endothelial-derived MPs are detectable in normal human blood and are increased in patients with a coagulation abnormality characterized by the presence of lupus anticoagulant. Thus, MPs can be induced by TNF in vitro, and may participate in vivo in the dissemination of proadhesive and procoagulant activities in thrombotic disorders.
0

Type 1 And Type 2 Diabetic Patients Display Different Patterns of Cellular Microparticles

Florence Sabatier et al.Sep 1, 2002
The development of vasculopathies in diabetes involves multifactorial processes including pathological activation of vascular cells. Release of microparticles by activated cells has been reported in diseases associated with thrombotic risk, but few data are available in diabetes. The aim of the present work was to explore the number and the procoagulant activity of cell-derived microparticles in type 1 and 2 diabetic patients. Compared with age-matched control subjects, type 1 diabetic patients presented significantly higher numbers of platelet and endothelial microparticles (PMP and EMP), total annexin V-positive blood cell microparticles (TMP), and increased levels of TMP-associated procoagulant activity. In type 2 diabetic patients, only TMP levels were significantly higher without concomitant increase of their procoagulant activity. Interestingly, in type 1 diabetic patients, TMP procoagulant activity was correlated with HbA(1c), suggesting that procoagulant activity is associated with glucose imbalance. These results showed that a wide vesiculation process, resulting from activation or apoptosis of several cell types, occurs in diabetes. However, diabetic patients differ by the procoagulant activity and the cellular origin of microparticles. In type 1 diabetic patients, TMP-procoagulant activity could be involved in vascular complications. Moreover, its correlation with HbA(1c) reinforces the importance of an optimal glycemic control in type 1 diabetes.
0

Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells

Mary Bebawy et al.Apr 16, 2009
Multidrug resistance (MDR), a significant impediment to the successful treatment of cancer clinically, has been attributed to the overexpression of P-glycoprotein (P-gp), a plasma membrane multidrug efflux transporter. P-gp maintains sublethal intracellular drug concentrations by virtue of its drug efflux capacity. The cellular regulation of P-gp expression is currently known to occur at either pre- or post-transcriptional levels. In this study, we identify a 'non-genetic' mechanism whereby microparticles (MPs) serve as vectors in the acquisition and spread of MDR. MPs isolated from drug-resistant cancer cells (VLB(100)) were co-cultured with drug sensitive cells (CCRF-CEM) over a 4 h period to allow for MP binding and P-gp transfer. Presence of P-gp on MPs was established using flow cytometry (FCM) and western blotting. Whole-cell drug accumulation assays using rhodamine 123 and daunorubicin (DNR) were carried out to validate the transfer of functional P-gp after co-culture. We establish that MPs shed in vitro from drug-resistant cancer cells incorporate cell surface P-gp from their donor cells, effectively bind to drug-sensitive recipient cells and transfer functional P-gp to the latter. These findings serve to substantially advance our understanding of the molecular basis for the emergence of MDR in cancer clinically and lead to new treatment strategies which target and inhibit MP mediated transfer of P-gp during the course of treatment.
0
Citation295
0
Save
1

Skin protective effects of RM191A, a novel superoxide dismutase mimetic

Artur Shariev et al.May 11, 2020
Abstract Superoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water soluble, dimeric copper (Cu 2+ -Cu 3+ )-centred polyglycine coordination complex. It displays 10-fold higher superoxide quenching activity compared to SOD as well as significant anti-inflammatory activity through beneficial modulation of several significant inflammatory pathways in cells. We tested the therapeutic potential of RM191A in a topical gel using a human skin explant model and observed that it significantly inhibits UV-induced DNA damage in the epidermis and dermis, including cyclobutane pyrimidine dimers (CPD), 8-oxo-guanine (8-oxoG) and 8-nitroguanine (8NGO). RM191A topical gel is found to be safe and non-toxic in mice following month-long daily dosing at 0.19 mL/kg body weight. Moreover, it significantly accelerates excisional wound healing, and reduces 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice. Highlights Superoxide dismutase mimetic RM191A is a highly stable copper (Cu 2+ -Cu 3+ )-polyglycine coordination complex RM191A exhibits potent antioxidant (10-fold more than that of superoxide dismutase) properties in vitro RM191A exhibits potent anti-inflammatory properties in vitro and in vivo RM191A protects human skin explants against UV-induced oxidative stress and DNA damage RM191A is non-toxic and readily bioavailable in mice RM191A attenuates TPA-induced skin inflammation and improves wound healing in mice
0

The Critical Role of Host and Bacterial Extracellular Vesicles in Endometriosis

Michaela Wagner et al.Nov 12, 2024
Endometriosis is a chronic, inflammatory, oestrogen-dependent disorder that is defined by the presence of endometrium-like tissue in the extra-uterine environment. It is estimated to affect approximately 10% of women of reproductive age, and the cause is still largely unknown. The heterogenous nature and complex pathophysiology of the disease results in diagnostic and therapeutic challenges. This review examines the emerging role of host extracellular vesicles (EVs) in endometriosis development and progression, with a particular focus on bacterial extracellular vesicles (BEVs). EVs are nano-sized membrane-bound particles that can transport bioactive molecules such as nucleic acids, proteins, and lipids, and therefore play an essential role in intercellular communication. Due to their unique cargo composition, EVs can play a dual role, both in the disease pathogenesis and as biomarkers. Both host and bacterial EVs (HEVs and BEVs) have been implicated in endometriosis, by modulating inflammatory responses, angiogenesis, tissue remodelling, and cellular proliferation within the peritoneal microenvironment. Understanding the intricate mechanisms underlying EVs in endometriosis pathophysiology and modulation of the lesion microenvironment may lead to novel diagnostic tools and therapeutic targets. Future research should focus on uncovering the specific cargo, the inter-kingdom cell-to-cell interactions, and the anti-inflammatory and anti-microbial mechanisms of both HEVs and BEVs in endometriosis in the hope of discovering translational findings that could improve the diagnosis and treatment of the disease.