ABSTRACT Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf13 ( ac13 ) is a conserved gene in all sequenced alphabaculoviruses. However, its function in the viral life cycle remains unknown. In this study we found that ac13 was a late gene and that the encoded protein, bearing a putative nuclear localization signal motif in the DUF3627 domain, colocalized with the nuclear membrane. Deletion of ac13 did not affect viral DNA replication, gene transcription, nucleocapsid assembly or occlusion body (OB) formation, but reduced virion budding from infected cells by approximately 400-fold compared with the wild-type virus. Deletion of ac13 substantially impaired the egress of nucleocapsids from the nucleus to the cytoplasm, while the number of occlusion-derived viruses embedded within OBs was unaffected. Taken together, our results indicated that ac13 was required for efficient nuclear egress of nucleocapsids during virion budding, but was dispensable for OB formation. IMPORTANCE Egress of baculovirus nucleocapsids from the nucleus is an essential process for morphogenesis of mature budded viruses, which is required to spread infection within susceptible cells and tissues. Although many viral and host proteins are required for nucleocapsid egress, the specific mechanisms underlying this process in baculoviruses remain somewhat enigmatic. In the present study, we found that the ac13 gene, in addition to ac11, ac51, ac66, ac75, ac78, gp41, ac93, p48, exon0 and ac142 , was required for efficient nuclear egress of nucleocapsids. Our results contribute to a better understanding of nucleocapsid egress in baculoviruses.