RM
Russell Mierop
Author with expertise in Precision Agriculture Technologies
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
1
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Predicting sweetpotato traits using machine learning: Impact of environmental and agronomic factors on shape and size

H. Liu et al.Jul 24, 2024
Consumer preference in produce, defined by shape and size, heavily influences this market. Understanding the environmental and management factors that impact these features can improve a farmer's economic margins. Since sweetpotatoes are hand-harvested and tend to have varying shapes and sizes, this can result in unpredictable profit margins. Methods for predicting the aesthetic characteristics of sweetpotatoes using environmental and agronomic factors with machine learning have not been developed. Moreover, predicting crop shape and size using agricultural data analysis is challenging due to the need for integrating diverse and complex datasets, including genotypes, weather, field management, and spatial information, into predictive models. This study employed an iterative process involving data preparation, feature engineering, variable selection, and model selection to develop machine learning models that predict sweetpotato aesthetic traits from agronomic inputs. We collected and organized data from various sources with different formats, spatial, and temporal resolutions. After comparing the performance of different machine learning methods using cross validation, Bagging regression had the least predictive error in terms of RMSE and MAE for sweetpotato's length-to-width ratio (RMSE = 0.185, MAE = 0.147) and curvature (RMSE = 0.013, MAE = 0.010) predictions. Bagging regression outperformed a naive baseline by 29%–38% when predicting sweetpotato features Our study also determined that the Covington cultivar and GPS locations were the most important factors that influenced the shape and size of sweetpotatoes. Fertilizer prior to planting, rose as an important feature when predicting sweetpotato curvature. Precipitation had a greater impact on the prediction of length-to-width ratio when compared to predicting curvature. The methodology presented herein could be applied to other crops like cucumbers, eggplants, peppers, and potatoes, where the size and shape are important factors for determining their value.
0

Computer vision approach to characterize size and shape phenotypes of horticultural crops using high-throughput imagery

Samiul Haque et al.Jul 26, 2020
Abstract For many horticultural crops, variation in quality (e.g., shape and size) contribute significantly to the crop’s market value. Metrics characterizing less subjective harvest quantities (e.g., yield and total biomass) are routinely monitored. In contrast, metrics quantifying more subjective crop quality characteristics such as ideal size and shape remain difficult to characterize objectively at the production-scale due to the lack of modular technologies for high-throughput sensing and computation. Several horticultural crops are sent to packing facilities after having been harvested, where they are sorted into boxes and containers using high-throughput scanners. These scanners capture images of each fruit or vegetable being sorted and packed, but the images are typically used solely for sorting purposes and promptly discarded. With further analysis, these images could offer unparalleled insight on how crop quality metrics vary at the industrial production-scale and provide further insight into how these characteristics translate to overall market value. At present, methods for extracting and quantifying quality characteristics of crops using images generated by existing industrial infrastructure have not been developed. Furthermore, prior studies that investigated horticultural crop quality metrics, specifically of size and shape, used a limited number of samples, did not incorporate deformed or non-marketable samples, and did not use images captured from high-throughput systems. In this work, using sweetpotato (SP) as a use case, we introduce a computer vision algorithm for quantifying shape and size characteristics in a high-throughput manner. This approach generates 3D model of SPs from two 2D images captured by an industrial sorter 90 degrees apart and extracts 3D shape features in a few hundred milliseconds. We applied the 3D reconstruction and feature extraction method to thousands of image samples to demonstrate how variations in shape features across sweetptoato cultivars can be quantified. We created a sweetpotato shape dataset containing sweetpotato images, extracted shape features, and qualitative shape types (U.S. No. 1 or Cull). We used this dataset to develop a neural network-based shape classifier that was able to predict Cull vs. U.S. No. 1 sweetpotato with 84.59% accuracy. In addition, using univariate Chi-squared tests and random forest, we identified the most important features for determining qualitative shape (U.S. No. 1 or Cull) of the sweetpotatoes. Our study serves as the first step towards enabling big data analytics for sweetpotato agriculture. The methodological framework is readily transferable to other horticultural crops, particularly those that are sorted using commercial imaging equipment.