Abstract BACKGROUND Reliable, fast, and accurate weed detection in farmland is crucial for precision weed management but remains challenging due to the diverse weed species present across different fields. While deep learning models for direct weed detection have been developed in previous studies, creating a training dataset that encompasses all possible weed species, ecotypes, and growth stages is practically unfeasible. This study proposes a novel approach to detect weeds by integrating semantic segmentation with image processing. The primary aim is to simplify the weed detection process by segmenting crop pixels and identifying all vegetation outside the crop mask as weeds. RESULTS The proposed method employs a semantic segmentation model to generate a mask of corn ( Zea mays L.) crops, identifying all green plant pixels outside the mask as weeds. This indirect segmentation approach reduces model complexity by avoiding the need for direct detection of diverse weed species. To enhance real‐time performance, the semantic segmentation model was optimized through knowledge distillation, resulting in a faster, lighter‐weight inference. Experimental results demonstrated that the DeepLabV3+ model, after applying knowledge distillation, achieved an average accuracy (aAcc) exceeding 99.5% and a mean intersection over union (mIoU) across all categories above 95.5%. Furthermore, the model's operating speed surpassed 34 frames per second (FPS). CONCLUSION This study introduces a novel method that accurately segments crop pixels to form a mask, identifying vegetation outside this mask as weeds. By focusing on crop segmentation, the method avoids the complexity associated with diverse weed species, varying densities, and different growth stages. This approach offers a practical and efficient solution to facilitate the training of effective computer vision models for precision weed detection and control. © 2024 Society of Chemical Industry.