We investigated tumor-cell-intrinsic chromatin accessibility patterns of pancreatic ductal adenocarcinoma (PDAC) by ATAC-seq on EpCAM+ PDAC malignant epithelial cells, sorted from 54 freshly resected human tumors, and discovered a signature of 1092 chromatin loci displaying differential accessibility between patients with disease free survival (DFS) < 1 year and patients with DFS > 1 year. Analyzing transcription factor (TF) binding motifs within these loci, we identified two TFs (ZKSCAN1 and HNF1b) displaying differential nuclear localization between patients with short vs. long DFS. We further developed a novel chromatin accessibility microarray methodology termed ATAC-Array, an easy-to-use platform obviating the time and cost of next generation sequencing. Applying this novel methodology to the original ATAC-seq libraries as well as independent libraries generated from patient-derived organoids, we validated ATAC-array technology in both the original ATAC-Seq cohort as well as in an independent validation cohort. We conclude that PDAC prognosis can be predicted by ATAC-array, which represents a novel, low-cost, clinically feasible technology for assessing chromatin accessibility profiles.