KS
Keiichiro Susuki
Author with expertise in Guillain-Barré Syndrome and Related Neuropathies
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
834
h-index:
28
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain–Barré syndrome

Nobuhiro Yuki et al.Jul 26, 2004
Molecular mimicry between microbial and self-components is postulated as the mechanism that accounts for the antigen and tissue specificity of immune responses in postinfectious autoimmune diseases. Little direct evidence exists, and research in this area has focused principally on T cell-mediated, antipeptide responses, rather than on humoral responses to carbohydrate structures. Guillain–Barré syndrome, the most frequent cause of acute neuromuscular paralysis, occurs 1–2 wk after various infections, in particular, Campylobacter jejuni enteritis. Carbohydrate mimicry [Galβ1–3GalNAcβ1–4(NeuAcα2–3)Galβ1-] between the bacterial lipooligosaccharide and human GM1 ganglioside is seen as having relevance to the pathogenesis of Guillain–Barré syndrome, and conclusive evidence is reported here. On sensitization with C. jejuni lipooligosaccharide, rabbits developed anti-GM1 IgG antibody and flaccid limb weakness. Paralyzed rabbits had pathological changes in their peripheral nerves identical with those present in Guillain–Barré syndrome. Immunization of mice with the lipooligosaccharide generated a mAb that reacted with GM1 and bound to human peripheral nerves. The mAb and anti-GM1 IgG from patients with Guillain–Barré syndrome did not induce paralysis but blocked muscle action potentials in a muscle–spinal cord coculture, indicating that anti-GM1 antibody can cause muscle weakness. These findings show that carbohydrate mimicry is an important cause of autoimmune neuropathy.
0
Citation480
0
Save
0

Anti-GM1 Antibodies Cause Complement-Mediated Disruption of Sodium Channel Clusters in Peripheral Motor Nerve Fibers

Keiichiro Susuki et al.Apr 11, 2007
Voltage-gated Na + (Na v ) channels are highly concentrated at nodes of Ranvier in myelinated axons and facilitate rapid action potential conduction. Autoantibodies to gangliosides such as GM1 have been proposed to disrupt nodal Nav channels and lead to Guillain-Barré syndrome, an autoimmune neuropathy characterized by acute limb weakness. To test this hypothesis, we examined the molecular organization of nodes in a disease model caused by immunization with gangliosides. At the acute phase with progressing limb weakness, Na v channel clusters were disrupted or disappeared at abnormally lengthened nodes concomitant with deposition of IgG and complement products. Paranodal axoglial junctions, the nodal cytoskeleton, and Schwann cell microvilli, all of which stabilize Na v channel clusters, were also disrupted. The nodal molecules disappeared in lesions with complement deposition but no localization of macrophages. During recovery, complement deposition at nodes decreased, and Na v channels redistributed on both sides of affected nodes. These results suggest that Na v channel alterations occur as a consequence of complement-mediated disruption of interactions between axons and Schwann cells. Our findings support the idea that acute motor axonal neuropathy is a disease that specifically disrupts the nodes of Ranvier.
0
Citation354
0
Save
1

The type 2 diabetes factor methylglyoxal mediates axon initial segment shortening and neuronal network activity changes

Ryan Griggs et al.May 11, 2021
Abstract Recent evidence suggests that alteration of axon initial segment (AIS) geometry (i.e., length or position along the axon) contributes to CNS dysfunction in neurological diseases. For example, AIS length is shorter in the prefrontal cortex of type 2 diabetic mice with cognitive impairment. The key type 2 diabetes-related factor that alters AIS geometry is unknown. Here, we tested whether modifying the levels of insulin, glucose, or methylglyoxal, a reactive carbonyl species that is a metabolite of glucose, changes AIS geometry in mature cultures of dissociated postnatal mouse cortex using immunofluorescent imaging of the AIS proteins AnkyrinG and βIV spectrin. Neither insulin nor glucose modification appreciably altered AIS length. Elevation of methylglyoxal produced reversible AIS shortening without cell death. Multi-electrode array recordings revealed a biphasic effect of methylglyoxal on neuronal network activity: an immediate, transient ∼300% increase in spiking and bursting rates was followed by a ∼20% reduction from baseline at 3 h. AIS length was unchanged at 0.5 h or 3 h after adding methylglyoxal, whereas development of AIS shortening at 24 h was associated with restoration of spiking to baseline levels. Immunostaining for the excitatory neuron marker Ca 2+ /calmodulin-dependent protein kinase II alpha revealed AIS shortening in both excitatory and inhibitory neuron populations. This suggests that complex mechanisms maintain neuronal network operation after acute exposure to the disease metabolite methylglyoxal. Importantly, our results indicate that methylglyoxal could be a key mediator of AIS shortening during type 2 diabetes. Significance Statement Small changes in the structure of the axon initial segment affect neuronal function and may be a key mediator of neurological complications in various disease states. However, the specific disease factors that mediate structural changes at the axon initial segment are relatively unknown. This is the first study to show that increase of methylglyoxal is sufficient to reduce axon initial segment length and modulate neuronal network function. Methylglyoxal is a disease factor implicated in a wide variety of conditions including type 2 diabetes, Alzheimer’s disease, and aging. Thus, these findings could significantly impact the understanding of neurological complications in several disease states and are of broad pathophysiological relevance.