MK
Michaela Keck
Author with expertise in Protein Arginine Methylation in Mammals
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
908
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Integrative and Comparative Genomic Analysis of HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas

Tanguy Seiwert et al.Jul 24, 2014
Abstract Purpose: The genetic differences between human papilloma virus (HPV)–positive and –negative head and neck squamous cell carcinomas (HNSCC) remain largely unknown. To identify differential biology and novel therapeutic targets for both entities, we determined mutations and copy-number aberrations in a large cohort of locoregionally advanced HNSCC. Experimental Design: We performed massively parallel sequencing of 617 cancer-associated genes in 120 matched tumor/normal samples (42.5% HPV-positive). Mutations and copy-number aberrations were determined and results validated with a secondary method. Results: The overall mutational burden in HPV-negative and HPV-positive HNSCC was similar with an average of 15.2 versus 14.4 somatic exonic mutations in the targeted cancer-associated genes. HPV-negative tumors showed a mutational spectrum concordant with published lung squamous cell carcinoma analyses with enrichment for mutations in TP53, CDKN2A, MLL2, CUL3, NSD1, PIK3CA, and NOTCH genes. HPV-positive tumors showed unique mutations in DDX3X, FGFR2/3 and aberrations in PIK3CA, KRAS, MLL2/3, and NOTCH1 were enriched in HPV-positive tumors. Currently targetable genomic alterations were identified in FGFR1, DDR2, EGFR, FGFR2/3, EPHA2, and PIK3CA. EGFR, CCND1, and FGFR1 amplifications occurred in HPV-negative tumors, whereas 17.6% of HPV-positive tumors harbored mutations in fibroblast growth factor receptor genes (FGFR2/3), including six recurrent FGFR3 S249C mutations. HPV-positive tumors showed a 5.8% incidence of KRAS mutations, and DNA-repair gene aberrations, including 7.8% BRCA1/2 mutations, were identified. Conclusions: The mutational makeup of HPV-positive and HPV-negative HNSCC differs significantly, including targetable genes. HNSCC harbors multiple therapeutically important genetic aberrations, including frequent aberrations in the FGFR and PI3K pathway genes. Clin Cancer Res; 21(3); 632–41. ©2014 AACR. See related commentary by Krigsfeld and Chung, p. 495
0
Citation571
0
Save
0

Integrative Analysis of Head and Neck Cancer Identifies Two Biologically Distinct HPV and Three Non-HPV Subtypes

Michaela Keck et al.Dec 10, 2014
Abstract Purpose: Current classification of head and neck squamous cell carcinomas (HNSCC) based on anatomic site and stage fails to capture biologic heterogeneity or adequately inform treatment. Experimental Design: Here, we use gene expression-based consensus clustering, copy number profiling, and human papillomavirus (HPV) status on a clinically homogenous cohort of 134 locoregionally advanced HNSCCs with 44% HPV+ tumors together with additional cohorts, which in total comprise 938 tumors, to identify HNSCC subtypes and discover several subtype-specific, translationally relevant characteristics. Results: We identified five subtypes of HNSCC, including two biologically distinct HPV subtypes. One HPV+ and one HPV− subtype show a prominent immune and mesenchymal phenotype. Prominent tumor infiltration with CD8+ lymphocytes characterizes this inflamed/mesenchymal subtype, independent of HPV status. Compared with other subtypes, the two HPV subtypes show low expression and no copy number events for EGFR/HER ligands. In contrast, the basal subtype is uniquely characterized by a prominent EGFR/HER signaling phenotype, negative HPV-status, as well as strong hypoxic differentiation not seen in other subtypes. Conclusion: Our five-subtype classification provides a comprehensive overview of HPV+ as well as HPV− HNSCC biology with significant translational implications for biomarker development and personalized care for patients with HNSCC. Clin Cancer Res; 21(4); 870–81. ©2014 AACR.
0
Citation337
0
Save
1

Combination of High Dose Rate Radiations (10X FFF/2400 MU/min/10 MV X-rays) and Paclitaxel Selectively Eliminates Melanoma Cells

Niraj Lodhi et al.Jul 23, 2021
Abstract Purpose Melanoma is one of the most aggressive cancer with 1.6% of total cancer deaths in United States. In recent years treatment options for metastatic melanoma have been improved by the FDA approval of new therapeutic agents. However, these inhibitors based therapies are non-specific and have severe toxicities including hyperkeratosis, photosensitivity, hepatitis, arthralgia and fatigue. The aim of this study is to determine the synthetic lethal effect (paclitaxel and radiations) on melanoma cells and reduce the total radiation doses by increasing the dose rates up to 2400 MU/min. Methods We previously reported a radiation treatment (10 MV x-rays, 10X-FFF, dose rate 2400MU/min, low total dose 0.5 Gy) that kills melanoma cells with 80% survival of normal HEM in vitro. In this study we extended the radiation cycle up to four and include paclitaxel treatment to study the synthetic lethal effect on melanoma and two additional normal primary cells, HDF and HEK. Cells were treated with paclitaxel prior to radiations of dose rate of 400 and 2400 MU/min with total radiation dose of only 0.5 Gy. To study induction of apoptosis and cell death, mitochondria respiration assay, DNA damage assay and colony formation assay were performed. Results Four days of consequent radiation treatment with paclitaxel significantly reduces the survival of melanoma cells by inducing of apoptosis and mitochondrial damages. After treatment, excessive DNA damage in melanoma cells leads to increase in expression of pro-apoptotic genes (Casp3) and decrease in expression of DNA repair gene (PARP1) and anti-apoptotic gene (Bcl2) to activate apoptosis pathway. Combination of paclitaxel and radiations reduces the survival of melanoma cells colonies when compared to radiation alone. Conclusion Our study indicates radiations with paclitaxel has potential synthetic lethal effect on melanoma cells and can be develop as therapy for melanoma without having toxicities or harmful effects to normal primary skin cells.