CP
Christopher Perry
Author with expertise in Molecular Mechanisms of Muscle Regeneration and Atrophy
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
501
h-index:
27
/
i10-index:
48
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle

Christopher Perry et al.Oct 5, 2010
Exercise training induces mitochondrial biogenesis, but the time course of molecular sequelae that accompany repetitive training stimuli remains to be determined in human skeletal muscle. Therefore, throughout a seven-session, high-intensity interval training period that increased (12%), we examined the time course of responses of (a) mitochondrial biogenesis and fusion and fission proteins, and (b) selected transcriptional and mitochondrial mRNAs and proteins in human muscle. Muscle biopsies were obtained 4 and 24 h after the 1st, 3rd, 5th and 7th training session. PGC-1α mRNA was increased >10-fold 4 h after the 1st session and returned to control within 24 h. This 'saw-tooth' pattern continued until the 7th bout, with smaller increases after each bout. In contrast, PGC-1α protein was increased 24 h after the 1st bout (23%) and plateaued at +30-40% between the 3rd and 7th bout. Increases in PGC-1β mRNA and protein were more delayed and smaller, and did not persist. Distinct patterns of increases were observed in peroxisome proliferator-activated receptor (PPAR) α and γ protein (1 session), PPAR β/δ mRNA and protein (5 sessions) and nuclear respiratory factor-2 protein (3 sessions) while no changes occurred in mitochondrial transcription factor A protein. Citrate synthase (CS) and β-HAD mRNA were rapidly increased (1 session), followed 2 sessions later (session 3) by increases in CS and β-HAD activities, and mitochondrial DNA. Changes in COX-IV mRNA (session 3) and protein (session 5) were more delayed. Training also increased mitochondrial fission proteins (fission protein-1, >2-fold; dynamin-related protein-1, 47%) and the fusion protein mitofusin-1 (35%) but not mitofusin-2. This study has provided the following novel information: (a) the training-induced increases in transcriptional and mitochondrial proteins appear to result from the cumulative effects of transient bursts in their mRNAs, (b) training-induced mitochondrial biogenesis appears to involve re-modelling in addition to increased mitochondrial content, and (c) the 'transcriptional capacity' of human muscle is extremely sensitive, being activated by one training bout.
0

Muscle mitochondrial function is impaired in adults with type 1 diabetes

Daniel Gottlieb et al.Jun 1, 2024
Type 1 diabetes has been associated with mitochondrial dysfunction. However, the mechanism of this dysfunction in adults remains unclear. A secondary analysis was conducted using data from several clinical trials measuring in-vivo and ex-vivo mitochondrial function in adults with type 1 diabetes (n = 34, age 38.8 ± 14.6 years) and similarly aged controls (n = 59, age 44.6 ± 13.9 years). In-vivo mitochondrial function was assessed before, during, and after isometric exercise with 31phosphorous magnetic resonance spectroscopy. High resolution respirometry of vastus lateralis muscle tissue was used to assess ex-vivo measures. In-vivo data showed higher rates of anaerobic glycolysis (p = 0.013), and a lower maximal mitochondrial oxidative capacity (p = 0.012) and mitochondrial efficiency (p = 0.024) in adults with type 1 diabetes. After adjustment for age and percent body fat maximal mitochondrial capacity (p = 0.014) continued to be lower and anaerobic glycolysis higher (p = 0.040) in adults with type 1 diabetes. Ex-vivo data did not demonstrate significant differences between the two groups. The in-vivo analysis demonstrates that adults with type 1 diabetes have mitochondrial dysfunction. This builds on previous research showing in-vivo mitochondrial dysfunction in youths with type 1 diabetes and suggests that defects in substrate or oxygen delivery may play a role in in-vivo dysfunction.
0
Citation1
0
Save
0

Muscle weakness and mitochondrial stress occur before metastasis in a novel mouse model of ovarian cancer cachexia

Luca Delfinis et al.Apr 8, 2024
Abstract Objectives A high proportion of women with advanced epithelial ovarian cancer (EOC) experience weakness and cachexia. This relationship is associated with increased morbidity and mortality. EOC is the most lethal gynecological cancer, yet no preclinical cachexia model has demonstrated the combined hallmark features of metastasis, ascites development, muscle loss and weakness in adult immunocompetent mice. Methods Here, we evaluated a new model of ovarian cancer-induced cachexia with the advantages of inducing cancer in adult immunocompetent C57BL/6J mice through orthotopic injections of EOC cells in the ovarian bursa. We characterized the development of metastasis, ascites, muscle atrophy, muscle weakness, markers of inflammation, and mitochondrial stress in the tibialis anterior (TA) and diaphragm ∼45, ∼75 and ∼90 days after EOC injection. Results Primary ovarian tumour sizes were progressively larger at each time point while robust metastasis, ascites development, and reductions in body, fat and muscle weights occurred by 90 Days. There were no changes in certain inflammatory (TNFα), atrogene (MURF1 and Atrogin) or GDF15 markers within both muscles whereas IL-6 was increased at 45 and 90 Day groups in the diaphragm. TA weakness in 45 Day preceded atrophy and metastasis that were observed later (75 and 90 Day, respectively). The diaphragm demonstrated both weakness and atrophy in 45 Day. In both muscles, this pre-metastatic muscle weakness corresponded with considerable reprogramming of gene pathways related to mitochondrial bioenergetics as well as reduced functional measures of mitochondrial pyruvate oxidation and creatine-dependent ADP/ATP cycling as well as increased reactive oxygen species emission (hydrogen peroxide). Remarkably, muscle force per unit mass at 90 days was partially restored in the TA despite the presence of atrophy and metastasis. In contrast, the diaphragm demonstrated progressive weakness. At this advanced stage, mitochondrial pyruvate oxidation in both muscles exceeded control mice suggesting an apparent metabolic super-compensation corresponding with restored indices of creatine-dependent adenylate cycling. Conclusion This mouse model demonstrates the concurrent development of cachexia and metastasis that occurs in women with EOC. The model provides physiologically relevant advantages of inducing tumour development within the ovarian bursa in immunocompetent adult mice. Moreover, the model reveals that muscle weakness in both TA and diaphragm precedes metastasis while weakness also precedes atrophy in the TA. An underlying mitochondrial bioenergetic stress corresponded with this early weakness. Collectively, these discoveries can direct new research towards the development of therapies that target pre-atrophy and pre-metastatic weakness during EOC in addition to therapies targeting cachexia. Highlights This study reports the first orthotopic model of metastatic ovarian cancer cachexia that can be induced in adult immunocompetent mice Diaphragm and limb muscle weakness precedes metastasis and atrophy during ovarian cancer Skeletal muscle mitochondrial oxidative and redox stress signatures occur during pre-metastatic stages of ovarian cancer Specific muscle force as well as mitochondrial pyruvate oxidation and creatine metabolism demonstrate compensation in later stages Ovarian cancer has heterogeneous effects on distinct muscle types across time
0
Citation1
0
Save
1

Cardiac atrophy, dysfunction, and metabolic impairments: a cancer-induced heart failure phenotype

Leslie Ogilvie et al.Jan 1, 2023
Muscle atrophy and weakness are prevalent features of cancer. While extensive research has characterized skeletal muscle wasting in cancer cachexia, limited studies have investigated how cardiac structure and function are affected by therapy-naive cancer. In cell-based models of orthotopic, syngeneic epithelial ovarian cancer (EOC) and pancreatic ductal adenocarcinoma (PDAC), and a patient-derived pancreatic xenograft model (PDX), we evaluated cardiac structure, function, and metabolism. Tumor-bearing mice showed cardiac atrophy and intrinsic systolic and diastolic dysfunction; associated with hypotension and exercise intolerance. In hearts of ovarian tumor-bearing mice, fatty acid-supported mitochondrial respiration decreased and carbohydrate-supported respiration increased, establishing a substrate shift in cardiac metabolism that is characteristic of heart failure. EOC decreased cytoskeletal and cardioprotective gene expression, which was paralleled by downregulation of transcription factors that regulate cardiomyocyte size and function. PDX tumors altered myosin heavy chain isoform expression - a molecular phenotype observed in heart failure. Markers of autophagy and ubiquitin-proteasome system were upregulated with cancer, providing evidence of catabolic signaling that promotes cardiac wasting. Together, metabolic stress, cardiac gene dysregulation, and upregulation of catabolic pathways contribute to cardiac atrophy and failure during cancer. Finally, we demonstrate that pathological cardiac remodeling is induced by human cancer, providing translational evidence of cancer-induced cardiomyopathy.
0

Assessment of Heterogeneity of Cytochrome P450 Activity in Cancer-Cell Population by Cytometry of Reaction Rate Constant is Robust to Variation in Substrate Concentration

Mariana Oliveira et al.Oct 15, 2020
ABSTRACT Enzymes of the cytochrome P450 (CYP) family catalyze the metabolism of chemotherapeutic agents and are among the key players in primary and acquired chemoresistance of cancer. The activity of CYP is heterogeneous in tumor tissues, and the quantitative characteristics of this heterogeneity can be used to predict chemoresistance. Cytometry of reaction rate constant (CRRC) is a kinetic approach to assess cell population heterogeneity by measuring rates of processes at the single-cell level via time-lapse imaging. CRRC was shown to be an accurate and robust method for assessing the heterogeneity of drug-extrusion activity catalyzed by ABC transporters, which are also key players in cancer chemoresistance. We hypothesized that CRRC is also a reliable method for assessing the heterogeneity of CYP activity. Here, we evaluated the robustness of assessing the heterogeneity of CYP activity by CRRC with respect to controlled variation in the concentration of a CYP substrate by comparing CRRC with non-kinetic approaches. We found that changing the substrate concentration by 20% resulted only in minimal changes in the position, width, and asymmetry of the peak in the CRRC histogram, while these parameters varied greatly in the non-kinetic histograms. Moreover, the Kolmogorov-Smirnov statistical test showed that the distribution of the cell population in CRRC histograms was not significantly different; the result was opposite for non-kinetic histograms. In conclusion, we were able to demonstrate the robustness of CRRC with respect to changes in substrate concentration when evaluating CYP activity at the single-cell level.
1

The adiponectin analogue ALY688-SR attenuates diaphragm fibrosis, atrophy and mitochondrial stress in a mouse model of Duchenne muscular dystrophy

Catherine Bellissimo et al.May 24, 2023
Abstract Fibrosis is associated with respiratory and limb muscle atrophy in Duchenne muscular dystrophy (DMD). Current standard of care partially delays the progression of this myopathy but there remains an unmet need to develop additional therapies. Adiponectin receptor agonism has emerged as a possible therapeutic target to lower inflammation and improve metabolism in mdx mouse models of DMD but the degree to which fibrosis and atrophy are prevented remain unknown. Here, we demonstrate that the recently developed slow-release peptidomimetic adiponectin analogue ALY688-SR prevents fibrosis and fibre type-specific atrophy in diaphragm of D2. mdx mice treated from days 7-28 of age. ALY688-SR also lowered IL-6mRNA but increased IL-6 and TGF-β protein contents in diaphragm, suggesting dynamic inflammatory remodeling. ALY688-SR alleviated mitochondrial redox stress by decreasing complex I-stimulated H 2 O 2 emission. Treatment also lowered in vitro diaphragm force production in diaphragm suggesting a complex relationship between adiponectin receptor activity, muscle remodeling and force generating properties during the very early stages of disease progression in D2. mdx mice. In tibialis anterior, the modest fibrosis at this young age was not altered by treatment, and atrophy was not apparent at this young age. These results demonstrate that short-term treatment of ALY688-SR partially prevents fibrosis and atrophy in the more disease-apparent diaphragm of young D2. mdx mice in relation to lower mitochondrial redox stress. These results provide a foundation for the exploration of slow-release adiponectin-based therapies to prevent fibrosis and atrophy in Duchenne muscular dystrophy.
1

Muscle weakness precedes atrophy during cancer cachexia and is associated with muscle-specific mitochondrial stress

Luca Delfinis et al.Sep 16, 2021
Abstract Muscle weakness and wasting are defining features of cancer-induced cachexia. Mitochondrial stress occurs before atrophy in certain muscles, but distinct responses between muscles and across time remains unclear. We aimed to determine the time-dependent and muscle-specific responses to Colon-26 (C26) cancer-induced cachexia in mice. At 2 weeks post-inoculation, the presence of small tumours did not alter body or muscle mass but decreased force production in the quadriceps and diaphragm. Pyruvate-supported mitochondrial respiration was lower in quadriceps while mitochondrial H 2 O 2 emission was elevated in diaphragm. At 4 weeks, large tumours corresponded to lower body mass, muscle mass, and cross-sectional area of fibers in quadriceps and diaphragm. Force production in quadriceps was unchanged but remained lower in diaphragm vs control. Mitochondrial respiration was increased while H 2 O 2 emission was unchanged in both muscles vs control. Mitochondrial creatine sensitivity was compromised in quadriceps. These findings indicate muscle weakness precedes atrophy in quadriceps and diaphragm but is linked to heterogeneous mitochondrial alterations. Eventual muscle-specific restorations in force and bioenergetics highlight how the effects of cancer on one muscle do not predict the response in another muscle. Exploring heterogeneous responses of muscles to cancer may reveal new mechanisms underlying distinct sensitivities, or resistance, to cancer cachexia.
0

Skeletal Muscle Mitochondrial Morphology Negatively Affected in Mice Lacking Xin

Grace Martin et al.Jun 6, 2024
Altered mitochondrial structure and function are implicated in the functional decline of skeletal muscle. Numerous cytoskeletal proteins are known to affect mitochondrial homeostasis, but this complex network is still being unraveled. Here, we investigated mitochondrial alterations in mice lacking the cytoskeletal adapter protein, XIN (XIN-/-). XIN-/- and wild-type littermate male and female mice were fed a chow or high-fat diet (HFD; 60% kcal fat) for 8 weeks before analyses of their skeletal muscles were conducted. Immuno-electron microscopy (EM) and immunofluorescence staining revealed XIN in the mitochondria and peri-mitochondrial areas, as well as the myoplasm. Intermyofibrillar mitochondria in chow-fed XIN-/- mice were notably different from wild-type (large, and/or swollen in appearance). Succinate dehydrogenase and Cytochrome Oxidase IV staining indicated greater evidence of mitochondrial enzyme activity in XIN-/- mice. No difference in body mass gains or glucose handling was observed between cohorts with HFD. However, EM revealed significantly greater mitochondrial density with evident structural abnormalities (swelling, reduced cristae density) in XIN-/- mice. Absolute Complex I and II-supported respiration was not different between groups, but relative to mitochondrial density, was significantly lower in XIN-/-. These results provide the first evidence for a role of XIN in maintaining mitochondrial morphology and function.
1

Skeletal Muscle Mitochondrial Morphology Negatively Affected by Loss of Xin

Grace Martin et al.Sep 15, 2023
Abstract Altered mitochondrial structure and function are implicated in the functional decline of skeletal muscle. Numerous cytoskeletal proteins have been reported to affect mitochondrial homeostasis, but this complex network is still being unraveled. Here, we investigated alterations to mitochondrial structure and function in mice lacking the cytoskeletal adapter protein, Xin. Xin deficient (Xin-/-) and wild-type (WT) littermate mice were fed a chow or high-fat diet (HFD; 60% kcal fat) for 8 weeks before high-resolution respirometry, histology, electron microscopy and Western blot analyses of their skeletal muscles were conducted. Immuno-electron microscopy and immunofluorescence staining indicates that Xin is present in the mitochondria and peri-mitochondrial areas, as well as the myoplasm. Intermyofibrillar mitochondria in chow-fed Xin-/- mice were notably different from WT; frequently spanning a whole sarcomere and/or swollen in appearance with abnormal cristae. Succinate Dehydrogenase and Cytochrome Oxidase IV (COX) activity staining indicated greater evidence of mitochondrial enzyme activity in Xin-/- mice. HFD did not result in a difference between cohorts with respect to body mass gains or glucose handling. However, electron microscopy revealed significantly greater mitochondrial density (∼2.1-fold) with evident structural abnormalities (swelling, reduced cristae density) in Xin-/- mice. Complex I and II-supported respiration were not different between groups per mg muscle, but when made relative to mitochondrial density, were significantly lower in Xin-/- muscles. Western blotting of fusion, fission, and autophagy proteins revealed no differences between groups. These results provide the first evidence for a role of Xin in maintaining mitochondrial morphology and function but not in regulating mitochondrial dynamics.
Load More