BB
Bilel Benjdira
Author with expertise in Deep Learning in Computer Vision and Image Recognition
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
553
h-index:
18
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Deep Learning Approach for Car Detection in UAV Imagery

Nassim Ammour et al.Mar 27, 2017
This paper presents an automatic solution to the problem of detecting and counting cars in unmanned aerial vehicle (UAV) images. This is a challenging task given the very high spatial resolution of UAV images (on the order of a few centimetres) and the extremely high level of detail, which require suitable automatic analysis methods. Our proposed method begins by segmenting the input image into small homogeneous regions, which can be used as candidate locations for car detection. Next, a window is extracted around each region, and deep learning is used to mine highly descriptive features from these windows. We use a deep convolutional neural network (CNN) system that is already pre-trained on huge auxiliary data as a feature extraction tool, combined with a linear support vector machine (SVM) classifier to classify regions into “car” and “no-car” classes. The final step is devoted to a fine-tuning procedure which performs morphological dilation to smooth the detected regions and fill any holes. In addition, small isolated regions are analysed further using a few sliding rectangular windows to locate cars more accurately and remove false positives. To evaluate our method, experiments were conducted on a challenging set of real UAV images acquired over an urban area. The experimental results have proven that the proposed method outperforms the state-of-the-art methods, both in terms of accuracy and computational time.
1

Signatures of Brain Network Alteration in Psychogenic Non-Epileptic Seizures: A Rest-EEG Study Based on Power Spectral Density and Phase Lag Index

Giuseppe Varone et al.Oct 21, 2021
Abstract The main challenge in the clinical assessment of Psychogenic Non-Epileptic Seizures (PNES) is the lack of an electroencephalographic marker in the electroencephalography (EEG) readout. Although decades of EEG studies have focused on detecting cortical brain function underlying PNES, the principle of PNES remains poorly understood. To address this problem, electric potentials generated by large populations of neurons were collected during the resting state to be processed after that by Power Spectrum Density (PSD) for possible analysis of PNES signatures. Additionally, the integration of distributed information of regular and synchronized multi-scale communication within and across inter-regional brain areas has been observed using functional connectivity tools like Phase Lag Index (PLI) and graph-derived metrics. A cohort study of 20 PNES and 19 Healthy Control subjects (HC) were enrolled. The major finding is that PNES patients exhibited significant differences in alpha-power spectrum in brain regions related to cognitive operations, attention, working memory, and movement regulation. Noticeably, we observed that there exists an altered oscillatory activity and a widespread inter-regional phase desynchronization. This indicates changes in global efficiency, node betweenness, shortest path length, and small worldness in the delta, theta, alpha, and beta frequency bands. Finally, our findings look into new evidence of the intrinsic organization of functional brain networks that reflects a dysfunctional level of integration of local activity across brain regions, which can provide new insights into the pathophysiological mechanisms of PNES.
0

DiffPlate: A Diffusion Model for Super-Resolution of License Plate Images

Sawsan AlHalawani et al.Jul 7, 2024
License plate recognition is a pivotal challenge in surveillance applications, predominantly due to the low resolution and diminutive size of license plates, which impairs recognition accuracy. The advent of AI-based super-resolution techniques offers a promising avenue to ameliorate the resolution of such images. Despite the deployment of various super-resolution methodologies, including Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), the quest for satisfactory outcomes in license plate image enhancement persists. This paper introduces “DiffPlate”, a novel Diffusion Model specifically tailored for license plate super-resolution. Leveraging the unprecedented capabilities of Diffusion Models in image generation, DiffPlate is meticulously trained on a dataset comprising low-resolution and high-resolution pairs of Saudi license plates, curated for our surveillance application. Our empirical analysis substantiates that DiffPlate markedly eclipses state-of-the-art alternatives such as SwinIR and ESRGAN, evidencing a 26.47% and 37.32% enhancement in Peak Signal-to-Noise Ratio (PSNR) against these benchmarks, respectively. Furthermore, DiffPlate achieves superior performance in terms of Structural Similarity Index (SSIM), with a 4.88% and 16.21% improvement over SwinIR and ESRGAN, respectively. Human evaluative studies further corroborate that images refined by DiffPlate were preferred 92% more frequently compared to those processed by other algorithms. Through DiffPlate, we present a new solution to the license plate super-resolution challenge, demonstrating significant potential for adoption in real-world surveillance systems.