CL
Changzhi Li
Author with expertise in Non-contact Physiological Monitoring Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(33% Open Access)
Cited by:
1,311
h-index:
52
/
i10-index:
205
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Hybrid FMCW-Interferometry Radar for Indoor Precise Positioning and Versatile Life Activity Monitoring

Guochao Wang et al.Sep 23, 2014
This paper presents a hybrid radar system that incorporates a linear frequency-modulated continuous-wave (FMCW) mode and an interferometry mode for indoor human localization and life activity monitoring applications. The unique operating principle and signal processing method allow the radar to work at two different modes for different purposes. The FMCW mode is responsible for range detection while the interferometry mode is responsible for life activities (respiration, heart beat, body motion, and gesture) monitoring. Such cooperation is built on each mode's own strength. Beam scanning is employed to determine azimuth information, which enables the system to plot 360° 2-D maps on which the room layout and objects' location can be clearly identified. Additionally, the transmitted chirp signal is coherent in phase, which is very sensitive to physiological motion and allows the proposed technique to distinguish human from nearby stationary clutters even when the human subjects are sitting still. Hence, the proposed radar is able to continuously track the location of individuals and monitor their life activities regardless of the complex indoor environment. A series of experiments have been carried out to demonstrate the proposed versatile life activity monitoring system.
0
Paper
Citation259
0
Save
0

A Portable FMCW Interferometry Radar With Programmable Low-IF Architecture for Localization, ISAR Imaging, and Vital Sign Tracking

Zhengyu Peng et al.Dec 16, 2016
This paper presents a portable radar system for short-range localization, inverse synthetic aperture radar imaging, and vital sign tracking. The proposed sensor incorporates frequency-modulated continuous-wave (FMCW) and interferometry (Doppler) modes, which enable this radar system to obtain both absolute range information and tiny vital signs (i.e., respiration and heartbeat) of human targets. These two different operation modes can be switched through an on-board microcontroller. To simplify the system, the proposed radar utilizes the audio card of a laptop to sample the baseband signal. The FMCW mode of the radar uses operational-amplifier-based circuits to generate an analog sawtooth signal and a reference pulse sequence (RPS). The RPS is locked to the sawtooth signal to obtain coherence for the radar system. For the interferometry mode, a low-intermediate-frequency modulation method is implemented to avoid the slow vital signs from being distorted by the high-pass filter of the audio card. Several experiments were carried out to reveal the capability and distinct operational features of the proposed portable hybrid radar. The experiments also showed that the system can easily detect glass, which is usually difficult to identify for optical-based sensors. In addition, 2-D scanning in a complex environment revealed that the proposed radar was able to differentiate human targets from other objects. Moreover, ISAR images were used to isolate moving human targets from surrounding clutter. Finally, the proposed radar also demonstrated its ability to accurately measure vital signs when a human subject sits still.
1

Potential inhibitors for blocking the interaction of the coronavirus SARS-CoV-2 spike protein and its host cell receptor ACE2

Changzhi Li et al.Dec 15, 2021
ABSTRACT The outbreak of SARS-CoV-2 continues to pose a serious threat to human health and social and economic stability. In this study, we established an anti-coronavirus drug screening platform based on the Homogeneous Time Resolved Fluorescence (HTRF) technology and the interaction between the coronavirus S protein and its host receptor ACE2. This platform is a rapid, sensitive, specific, and high throughput system. With this platform, we screened two compound libraries of 2,864 molecules and identified three potential anti-coronavirus compounds: tannic acid (TA), TS-1276 (anthraquinone), and TS-984 (9-Methoxycanthin-6-one). Our in vitro validation experiments indicated that TS-984 strongly inhibits the interaction of the coronavirus S-protein and the human cell ACE2 receptor. This data suggests that TS-984 is a potent blocker of the interaction between the S-protein and ACE2, which might have the potential to be developed into an effective anti-coronavirus drug. SIGNIFICANCE The ongoing pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a serious threat to public health worldwide. Given the urgency of the situation, researchers are attempting to repurpose existing drugs for treating COVID-19. In this present study, we screened two compound libraries of 2,864 molecules and identified a potent inhibitor (TS-984) for blocking the coronavirus S-protein and the human cell ACE2 receptor. TS-984 might have the potential to be developed into an effective anti-coronavirus drug for treating COVID-19.
1
Citation1
0
Save
0

Magnetic Nanoparticles for Magnetic Particle Imaging (MPI): Design and Applications

Bahareh Rezaei et al.Jan 1, 2024
Recent advancements in medical imaging have brought forth various techniques such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound, each contributing to improved diagnostic capabilities. Most recently, magnetic particle imaging (MPI) has become a rapidly advancing imaging modality with profound implications for medical diagnostics and therapeutics. By directly detecting the magnetization response of magnetic tracers, MPI surpasses conventional imaging modalities in sensitivity and quantifiability, particularly in stem cell tracking applications. Herein, this comprehensive review explores the fundamental principles, instrumentation, magnetic nanoparticle tracer design, and applications of MPI, offering insights into recent advancements and future directions. Novel tracer designs, such as zinc-doped iron oxide nanoparticles (Zn-IONPs), exhibit enhanced performance, broadening MPI's utility. Spatial encoding strategies, scanning trajectories, and instrumentation innovations are elucidated, illuminating the technical underpinnings of MPI's evolution. Moreover, integrating machine learning and deep learning methods enhances MPI's image processing capabilities, paving the way for more efficient segmentation, quantification, and reconstruction. The potential of superferromagnetic iron oxide nanoparticle chains (SFMIOs) as new MPI tracers further advanced the imaging quality and expanded clinical applications, underscoring the promising future of this emerging imaging modality.
0

Benzothiadiazole‐Fused Cyanoindone: A Superior Building Block for Designing Ultra‐Narrow Bandgap Electron Acceptor with Long‐Range Ordered Stacking

Nuo Zhang et al.Nov 29, 2024
There are great demands of developing ultra‐narrow bandgap electron acceptors for multifunctional electronic devices, particularly semi‐transparent organic photovoltaics (OPVs) for building‐integrated applications. However, current ultra‐narrow bandgap materials applied in OPVs, primarily based on electron‐rich cores, exhibit defects of high‐lying energy levels and inferior performance. We herein proposed a novel strategy by designing the benzothiazole‐fused cyanoindone (BTC) unit with ultra‐strong electron‐withdrawing ability as the terminal to synthesize the acceptor BTC‐2. The BTC unit imparts red‐shifted absorption up to 1000 nm to BTC‐2, attributed to enhanced intramolecular charge transfer and the quinoid resonance effect. Additionally, BTC‐2 features deep‐lying energy levels with the highest occupied molecular orbital level of –5.81 eV, due to the ultra‐strong electron‐withdrawing ability of BTC. Furthermore, BTC‐2 exhibits long‐range ordering in both molecular packing and macroscopic blend morphology, resulting from shoulder‐to‐shoulder packing of two BTC units, leading to an ultra‐long exciton lifetime over 1.1 ns. These superiorities facilitated a 17.17% efficiency in the binary OPV device with an extremely high photocurrent of 30.34 mA cm−2, representing the best performance for ultra‐narrow bandgap electron acceptors, and a record light utilization efficiency of 4.88% in binary semi‐transparent systems. Overall, BTC is a superior building block for designing ultra‐narrow bandgap electron acceptors.
Load More