Abstract We present initial results from the K -band Focal Plane Array Examinations of Young STellar Object Natal Environments survey, a large project on the 100 m Green Bank Telescope mapping ammonia emission across 11 giant molecular clouds at distances of 0.9–3.0 kpc (Cygnus X North, Cygnus X South, M16, M17, Mon R1, Mon R2, NGC 2264, NGC 7538, Rosette , W3, and W48). This data release includes the NH 3 (1,1) and (2,2) maps for each cloud, which are modeled to produce maps of kinetic temperature, centroid velocity, velocity dispersion, and ammonia column density. Median cloud kinetic temperatures range from 11.4 ± 2.2 K in the coldest cloud (Mon R1) to 23.0 ± 6.5 K in the warmest cloud (M17). Using dendrograms on the NH 3 (1,1) integrated intensity maps, we identify 856 dense gas clumps across the 11 clouds. Depending on the cloud observed, 40%–100% of the clumps are aligned spatially with filaments identified in H 2 column density maps derived from spectral energy distribution fitting of dust continuum emission. A virial analysis reveals that 523 of the 835 clumps (∼63%) with mass estimates are bound by gravity alone. We find no significant difference between the virial parameter distributions for clumps aligned with the dust-continuum filaments and those unaligned with filaments. In some clouds, however, hubs or ridges of dense gas with unusually high mass and low virial parameters are located within a single filament or at the intersection of multiple filaments. These hubs and ridges tend to host water maser emission, multiple 70 μ m detected protostars, and have masses and radii above an empirical threshold for forming massive stars.