AG
Adam Ginsburg
Author with expertise in Star Formation in Molecular Clouds and Protoplanetary Disks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
56
(98% Open Access)
Cited by:
16,095
h-index:
50
/
i10-index:
141
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE

R. Margutti et al.Dec 10, 2013
The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN 2009ip during its remarkable rebrightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the Very Large Array, Swift, Fermi, Hubble Space Telescope, and XMM) constrain SN 2009ip to be a low energy (E ∼ 1050 erg for an ejecta mass ∼0.5 M☉) and asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitor star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at ∼5 × 1014 cm with M ∼ 0.1 M☉, ejected by the precursor outburst ∼40 days before the major explosion. We interpret the NIR excess of emission as signature of material located further out, the origin of which has to be connected with documented mass-loss episodes in the previous years. Our modeling predicts bright neutrino emission associated with the shock break-out if the cosmic-ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, which later interacted with material deposited in the surroundings by previous eruptions. Future observations will reveal if the massive luminous progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass loss, the physical origin of which has yet to be identified.
0

Molecular gas kinematics within the central 250 pc of the Milky Way

Jonathan Henshaw et al.Feb 12, 2016
Using spectral-line observations of HNCO, N2H+, and HNC, we investigate the kinematics of dense gas in the central ~250 pc of the Galaxy. We present SCOUSE (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, SCOUSE accurately describes the {l, b, v_LSR} distribution of CMZ gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km/s<\sigma<53.1 km/s. A median dispersion of 9.8 km/s, translates to a Mach number, M_3D>28. The gas is distributed throughout several "streams", with projected lengths ~100-250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km/s clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l ,b, v_LSR} space. These features have previously invoked supernova-driven shells and cloud-cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3-D structure of the CMZ are investigated: i) two spiral arms; ii) a closed elliptical orbit; iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parameterisation of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km/s and 50 km/s clouds and Sgr C.
0

Dense gas in the Galactic central molecular zone is warm and heated by turbulence

Adam Ginsburg et al.Jan 26, 2016
The Galactic center is the closest region in which we can study star formation under extreme physical conditions like those in high-redshift galaxies. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H$_2$CO) transitions. We used the $3_{2,1} - 2_{2,0} / 3_{0,3} - 2_{0,2}$ line ratio to determine the gas temperature in $n \sim 10^4 - 10^5 $cm$^{-3}$ gas. We have produced temperature maps and cubes with 30" and 1 km/s resolution and published all data in FITS form. Dense gas temperatures in the Galactic center range from ~60 K to > 100 K in selected regions. The highest gas temperatures T_G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km/s and 50 km/s clouds, and in "The Brick" (G0.253+0.016). We infer an upper limit on the cosmic ray ionization rate ${\zeta}_{CR} < 10^{-14}$ 1/s. The dense molecular gas temperature of the region around our Galactic center is similar to values found in the central regions of other galaxies, in particular starburst systems. The gas temperature is uniformly higher than the dust temperature, confirming that dust is a coolant in the dense gas. Turbulent heating can readily explain the observed temperatures given the observed line widths. Cosmic rays cannot explain the observed variation in gas temperatures, so CMZ dense gas temperatures are not dominated by cosmic ray heating. The gas temperatures previously observed to be high in the inner ~75 pc are confirmed to be high in the entire CMZ.
0

THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW

Alma Partnership et al.Jul 14, 2015
A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
0
Paper
Citation106
0
Save
2

Distributed Star Formation throughout the Galactic Center Cloud Sgr B2

Adam Ginsburg et al.Feb 1, 2018
Abstract We report ALMA observations with resolution ≈0.″5 at 3 mm of the extended Sgr B2 cloud in the Central Molecular Zone (CMZ). We detect 271 compact sources, most of which are smaller than 5000 au. By ruling out alternative possibilities, we conclude that these sources consist of a mix of hypercompact H ii regions and young stellar objects (YSOs). Most of the newly detected sources are YSOs with gas envelopes that, based on their luminosities, must contain objects with stellar masses  M * ≳ 8  M ⊙ . Their spatial distribution spread over a ∼12 × 3 pc region demonstrates that Sgr B2 is experiencing an extended star formation event, not just an isolated “starburst” within the protocluster regions. Using this new sample, we examine star formation thresholds and surface density relations in Sgr B2. While all of the YSOs reside in regions of high column density (  N ( H 2 ) ≳ 2 ×  10 23    cm − 2  ), not all regions of high column density contain YSOs. The observed column density threshold for star formation is substantially higher than that in solar vicinity clouds, implying either that high-mass star formation requires a higher column density or that any star formation threshold in the CMZ must be higher than in nearby clouds. The relation between the surface density of gas and stars is incompatible with extrapolations from local clouds, and instead stellar densities in Sgr B2 follow a linear  Σ * – Σ gas relation, shallower than that observed in local clouds. Together, these points suggest that a higher volume density threshold is required to explain star formation in CMZ clouds.
0

‘The Brick’ is not abrick: a comprehensive study of the structure and dynamics of the central molecular zone cloud G0.253+0.016

Jonathan Henshaw et al.Feb 17, 2019
In this paper we provide a comprehensive description of the internal dynamics of G0.253+0.016 (a.k.a. 'the Brick'); one of the most massive and dense molecular clouds in the Galaxy to lack signatures of widespread star formation. As a potential host to a future generation of high-mass stars, understanding largely quiescent molecular clouds like G0.253+0.016 is of critical importance. In this paper, we reanalyse Atacama Large Millimeter Array cycle 0 HNCO $J=4(0,4)-3(0,3)$ data at 3 mm, using two new pieces of software which we make available to the community. First, scousepy, a Python implementation of the spectral line fitting algorithm scouse. Secondly, acorns (Agglomerative Clustering for ORganising Nested Structures), a hierarchical n-dimensional clustering algorithm designed for use with discrete spectroscopic data. Together, these tools provide an unbiased measurement of the line of sight velocity dispersion in this cloud, $\sigma_{v_{los}, {\rm 1D}}=4.4\pm2.1$ kms$^{-1}$, which is somewhat larger than predicted by velocity dispersion-size relations for the Central Molecular Zone (CMZ). The dispersion of centroid velocities in the plane of the sky are comparable, yielding $\sigma_{v_{los}, {\rm 1D}}/\sigma_{v_{pos}, {\rm 1D}}\sim1.2\pm0.3$. This isotropy may indicate that the line-of-sight extent of the cloud is approximately equivalent to that in the plane of the sky. Combining our kinematic decomposition with radiative transfer modelling we conclude that G0.253+0.016 is not a single, coherent, and centrally-condensed molecular cloud; 'the Brick' is not a \emph{brick}. Instead, G0.253+0.016 is a dynamically complex and hierarchically-structured molecular cloud whose morphology is consistent with the influence of the orbital dynamics and shear in the CMZ.
0
Citation74
0
Save
Load More