Electroweak measurements performed with data taken at the electron–positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb−1 collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV.Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron–positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose–Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, mW and ΓW, the branching fraction of W decays to hadrons, B(W→had), and the trilinear gauge-boson self-couplings g1Z, κγ and λγ are determined to be: mW=80.376±0.033GeVΓW=2.195±0.083GeVB(W→had)=67.41±0.27%g1Z=0.984−0.020+0.018κγ=0.982±0.042λγ=−0.022±0.019.