SG
Simon Glover
Author with expertise in Star Formation in Molecular Clouds and Protoplanetary Disks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
116
(97% Open Access)
Cited by:
5,489
h-index:
69
/
i10-index:
264
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS

Thomas Greif et al.Aug 8, 2011
The cosmic dark ages ended a few hundred million years after the Big Bang, when the first stars began to fill the universe with new light. It has generally been argued that these stars formed in isolation and were extremely massive - perhaps 100 times as massive as the Sun. In a recent study, Clark and collaborators showed that this picture requires revision. They demonstrated that the accretion disks that build up around Population III stars are strongly susceptible to fragmentation and that the first stars should therefore form in clusters rather than in isolation. We here use a series of high-resolution hydrodynamical simulations performed with the moving mesh code AREPO to follow up on this proposal and to study the influence of environmental parameters on the level of fragmentation. We model the collapse of five independent minihalos from cosmological initial conditions, through the runaway condensation of their central gas clouds, to the formation of the first protostar, and beyond for a further 1000 years. During this latter accretion phase, we represent the optically thick regions of protostars by sink particles. Gas accumulates rapidly in the circumstellar disk around the first protostar, fragmenting vigorously to produce a small group of protostars. After an initial burst, gravitational instability recurs periodically, forming additional protostars with masses ranging from ~ 0.1 to 10 M_sun. Although the shape, multiplicity, and normalization of the protostellar mass function depend on the details of the sink-particle algorithm, fragmentation into protostars with diverse masses occurs in all cases, confirming earlier reports of Population III stars forming in clusters. Depending on the efficiency of later accretion and merging, Population III stars may enter the main sequence in clusters and with much more diverse masses than are commonly assumed.
0
Citation415
0
Save
0

The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM

Stefanie Walch et al.Sep 18, 2015
The SILCC (SImulating the Life-Cycle of molecular Clouds) project aims to self-consistently understand the small-scale structure of the interstellar medium (ISM) and its link to galaxy evolution. We simulate the evolution of the multiphase ISM in a (500 pc)2 × ±5 kpc region of a galactic disc, with a gas surface density of |$\Sigma _{_{\rm GAS}} = 10 \;{\rm M}_{\odot }\,{\rm pc}^{-2}$|⁠. The flash 4 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2 and CO considering (self-) shielding, and supernova (SN) feedback but omit shear due to galactic rotation. We explore SN explosions at different rates in high-density regions (peak), in random locations with a Gaussian distribution in the vertical direction (random), in a combination of both (mixed), or clustered in space and time (clus/clus2). Only models with self-gravity and a significant fraction of SNe that explode in low-density gas are in agreement with observations. Without self-gravity and in models with peak driving the formation of H2 is strongly suppressed. For decreasing SN rates, the H2 mass fraction increases significantly from <10 per cent for high SN rates, i.e. 0.5 dex above Kennicutt–Schmidt, to 70–85 per cent for low SN rates, i.e. 0.5 dex below KS. For an intermediate SN rate, clustered driving results in slightly more H2 than random driving due to the more coherent compression of the gas in larger bubbles. Magnetic fields have little impact on the final disc structure but affect the dense gas (n ≳ 10 cm−3) and delay H2 formation. Most of the volume is filled with hot gas (∼80 per cent within ±150 pc). For all but peak driving a vertically expanding warm component of atomic hydrogen indicates a fountain flow. We highlight that individual chemical species populate different ISM phases and cannot be accurately modelled with temperature-/density-based phase cut-offs.
0

Formation and evolution of primordial protostellar systems

Thomas Greif et al.Jun 19, 2012
We investigate the formation of the first stars at the end of the cosmic dark ages with a suite of three-dimensional, moving-mesh simulations that directly resolve the collapse of the gas beyond the formation of the first protostar at the centre of a dark matter minihalo. The simulations cover more than 25 orders of magnitude in density and have a maximum spatial resolution of 0.05 R⊙, which extends well below the radius of individual protostars and captures their interaction with the surrounding gas. In analogy to previous studies that employed sink particles, we find that the Keplerian disc around the primary protostar fragments into a number of secondary protostars, which is facilitated by H2 collisional dissociation cooling and collision-induced emission. The further evolution of the protostellar system is characterized by strong gravitational torques that transfer angular momentum between the secondary protostars formed in the disc and the surrounding gas. This leads to the migration of about half of the secondary protostars to the centre of the cloud in a free-fall time, where they merge with the primary protostar and enhance its growth to about five times the mass of the second most massive protostar. By the same token, a fraction of the protostars obtain angular momentum from other protostars via N-body interactions and migrate to higher orbits. On average, only every third protostar survives until the end of the simulation. However, the number of protostars present at any given time increases monotonically, suggesting that the system will continue to grow beyond the limited period of time simulated here.
0

GRAVITATIONAL FRAGMENTATION IN TURBULENT PRIMORDIAL GAS AND THE INITIAL MASS FUNCTION OF POPULATION III STARS

Paul Clark et al.Jan 11, 2011
We report results from numerical simulations of star formation in the early universe that focus on the dynamical behavior of metal-free gas under different initial and environmental conditions. In particular we investigate the role of turbulence, which is thought to ubiquitously accompany the collapse of high-redshift halos. We distinguish between two main cases: the birth of Population III.1 stars - those which form in the pristine halos unaffected by prior star formation - and the formation of Population III.2 stars - those forming in halos where the gas is still metal free but has an increased ionization fraction. This latter case can arise either from exposure to the intense UV radiation of stellar sources in neighboring halos, or from the high virial temperatures associated with the formation of massive halos, that is, those with masses greater than 1e8 solar masses. We find that turbulent primordial gas is highly susceptible to fragmentation in both cases, even for turbulence in the subsonic regime, i.e. for rms velocity dispersions as low as 20 % of the sound speed. Contrary to our original expectations, fragmentation is more vigorous and more widespread in pristine halos compared to pre-ionized ones. We therefore predict Pop III.1 stars to be on average of somewhat lower mass, and form in larger groups, than Pop III.2 stars. We find that fragment masses cover over two orders of magnitude, indicating that the resulting Population III initial mass function was significantly extended in mass as well. This prompts the need for a large, high-resolution study of the formation of dark matter minihalos that is capable of resolving the turbulent flows in the gas at the moment when the baryons become self-gravitating. This would help determine which, if any, of the initial conditions presented in our study are realized in nature.
0
Citation264
0
Save
2

The lifecycle of molecular clouds in nearby star-forming disc galaxies

Mélanie Chevance et al.Dec 19, 2019
It remains a major challenge to derive a theory of cloud-scale ($\lesssim100$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially-resolved ($\sim100$ pc) CO-to-H$\alpha$ flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically 10-30 Myr, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $\Sigma_{\rm H_2}\geqslant8$M$_{\odot}$pc$^{-2}$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $\Sigma_{\rm H_2}\leqslant8$M$_{\odot}$pc$^{-2}$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H$\alpha$ (75-90% of the cloud lifetime), GMCs disperse within just 1-5 Myr once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4-10% These results show that galactic star formation is governed by cloud-scale, environmentally-dependent, dynamical processes driving rapid evolutionary cycling. GMCs and HII regions are the fundamental units undergoing these lifecycles, with mean separations of 100-300 pc in star-forming discs. Future work should characterise the multi-scale physics and mass flows driving these lifecycles.
2
Paper
Citation186
0
Save
0

PHANGS–ALMA: Arcsecond CO(2–1) Imaging of Nearby Star-forming Galaxies

Adam Leroy et al.Nov 24, 2021
Abstract We present PHANGS–ALMA, the first survey to map CO J = 2 → 1 line emission at ∼1″ ∼100 pc spatial resolution from a representative sample of 90 nearby ( d ≲ 20 Mpc) galaxies that lie on or near the z = 0 “main sequence” of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS–ALMA, each beam reaches the size of a typical individual giant molecular cloud, so that these data can be used to measure the demographics, life cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z = 0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, Atacama Large Millimeter/submillimeter Array (ALMA) observations, and characteristics of the delivered data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with MUSE on the Very Large Telescope, the Hubble Space Telescope, AstroSat, the Very Large Array, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle 5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1″ resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS–ALMA public data release.
0
Citation173
0
Save
Load More