RK
Ralf Klessen
Author with expertise in Star Formation in Molecular Clouds and Protoplanetary Disks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
144
(96% Open Access)
Cited by:
10,472
h-index:
95
/
i10-index:
456
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comparing the statistics of interstellar turbulence in simulations and observations

Christoph Federrath et al.Jan 29, 2010
We study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing, and compressive (curl-free) forcing, and compare our results to observations reported in the literature. We solve the equations of hydrodynamics on grids with up to 1024^3 cells for purely solenoidal and purely compressive forcing. Eleven lower-resolution models with mixtures of both forcings are also analysed. We find velocity dispersion--size relations consistent with observations and independent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger turbulent compression at the same RMS Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs). We conclude that the strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primarily in swept-up shells.
0

SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS

Thomas Greif et al.Aug 8, 2011
The cosmic dark ages ended a few hundred million years after the Big Bang, when the first stars began to fill the universe with new light. It has generally been argued that these stars formed in isolation and were extremely massive - perhaps 100 times as massive as the Sun. In a recent study, Clark and collaborators showed that this picture requires revision. They demonstrated that the accretion disks that build up around Population III stars are strongly susceptible to fragmentation and that the first stars should therefore form in clusters rather than in isolation. We here use a series of high-resolution hydrodynamical simulations performed with the moving mesh code AREPO to follow up on this proposal and to study the influence of environmental parameters on the level of fragmentation. We model the collapse of five independent minihalos from cosmological initial conditions, through the runaway condensation of their central gas clouds, to the formation of the first protostar, and beyond for a further 1000 years. During this latter accretion phase, we represent the optically thick regions of protostars by sink particles. Gas accumulates rapidly in the circumstellar disk around the first protostar, fragmenting vigorously to produce a small group of protostars. After an initial burst, gravitational instability recurs periodically, forming additional protostars with masses ranging from ~ 0.1 to 10 M_sun. Although the shape, multiplicity, and normalization of the protostellar mass function depend on the details of the sink-particle algorithm, fragmentation into protostars with diverse masses occurs in all cases, confirming earlier reports of Population III stars forming in clusters. Depending on the efficiency of later accretion and merging, Population III stars may enter the main sequence in clusters and with much more diverse masses than are commonly assumed.
0
Citation415
0
Save
0

Molecular Cloud Evolution. II. From Cloud Formation to the Early Stages of Star Formation in Decaying Conditions

Enrique Vázquez-Semadeni et al.Mar 6, 2007
We study the formation of giant dense cloud complexes and of stars within them using SPH numerical simulations of the collision of gas streams (``inflows'') in the WNM at moderately supersonic velocities. The collisions cause compression, cooling, and turbulence generation in the gas, forming a cloud that then becomes self-gravitating and begins to collapse globally. Simultaneously, the turbulent, nonlinear density fluctuations induce fast, local collapse events. The simulations show that (1) The clouds are not in a state of equilibrium. Instead, they undergo secular evolution. During its early stages, the cloud's mass and gravitational energy |Eg| increase steadily, while the turbulent energy Ek reaches a plateau. (2) When |Eg| becomes comparable to Ek, global collapse begins, causing a simultaneous increase in |Eg| and Ek that maintains a near-equipartition condition |Eg| ~ 2Ek. (3) Longer inflow durations delay the onset of global and local collapse by maintaining a higher turbulent velocity dispersion in the cloud over longer times. (4) The star formation rate is large from the beginning, without any period of slow and accelerating star formation. (5) The column densities of the local star-forming clumps closely resemble reported values of the column density required for molecule formation, suggesting that locally molecular gas and star formation occur nearly simultaneously. The MC formation mechanism discussed here naturally explains the apparent ``virialized'' state of MCs and the ubiquity of H I halos around them. Also, within their assumptions, our simulations support the scenario of rapid star formation after MCs are formed, although long (≳15 Myr) accumulation periods do occur during which the clouds build up their gravitational energy, and which are expected to be spent in the atomic phase.
0

Cluster-formation in the Rosette molecular cloud at the junctions of filaments

N. Schneider et al.Mar 9, 2012
For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. The Rosette molecular cloud, irradiated by the NGC2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression. The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at Av~3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star-forming regions. We conclude that star-formation in Rosette - and probably in high-mass star-forming clouds in general - is not globally triggered by the impact of UV-radiation. Moreover, star formation takes place in filaments that arose from the primordial turbulent structure built up during the formation of the cloud. Clusters form at filament mergers, but star formation can be locally induced in the direct interaction zone between an expanding HII--region and the molecular cloud.
0

The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM

Stefanie Walch et al.Sep 18, 2015
The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We simulate the evolution of the multi-phase ISM in a 500 pc x 500 pc x 10 kpc region of a galactic disc, with a gas surface density of $\Sigma_{_{\rm GAS}} = 10 \;{\rm M}_\odot/{\rm pc}^2$. The Flash 4.1 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H$_2$ and CO considering (self-) shielding, and supernova (SN) feedback. We explore SN explosions at different (fixed) rates in high-density regions (peak), in random locations (random), in a combination of both (mixed), or clustered in space and time (clustered). Only random or clustered models with self-gravity (which evolve similarly) are in agreement with observations. Molecular hydrogen forms in dense filaments and clumps and contributes 20% - 40% to the total mass, whereas most of the mass (55% - 75%) is in atomic hydrogen. The ionised gas contributes <10%. For high SN rates (0.5 dex above Kennicutt-Schmidt) as well as for peak and mixed driving the formation of H$_2$ is strongly suppressed. Also without self-gravity the H$_2$ fraction is significantly lower ($\sim$ 5%). Most of the volume is filled with hot gas ($\sim$90% within $\pm$2 kpc). Only for random or clustered driving, a vertically expanding warm component of atomic hydrogen indicates a fountain flow. Magnetic fields have little impact on the final disc structure. However, they affect dense gas ($n\gtrsim 10\;{\rm cm}^{-3}$) and delay H$_2$ formation. We highlight that individual chemical species, in particular atomic hydrogen, populate different ISM phases and cannot be accurately accounted for by simple temperature-/density-based phase cut-offs.
0

THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS

Christoph Federrath et al.Dec 5, 2012
The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We derive and compare six theoretical models for the star formation rate (SFR)—the Krumholz & McKee (KM), Padoan & Nordlund (PN), and Hennebelle & Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC—all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields and show that the SFR depends on four basic parameters: (1) virial parameter αvir; (2) sonic Mach number ; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma with the Alfvén Mach number . We compare all six theories with MHD simulations, covering cloud masses of 300 to 4 × 106 M☉ and Mach numbers –50 and –∞, with solenoidal (b = 1/3), mixed (b = 0.4), and compressive turbulent (b = 1) forcings. We find that the SFR increases by a factor of four between and 50 for compressive turbulent forcing and αvir ∼ 1. Comparing forcing parameters, we see that the SFR is more than 10 times higher with compressive than solenoidal forcing for simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvénic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1%–10% and local efficiencies = 0.3–0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.
Load More