PU
Piero Ullio
Author with expertise in Particle Dark Matter and Detection Methods
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2,018
h-index:
40
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo

Lars Bergström et al.Aug 1, 1998
Recent advances in N-body simulations of cold dark matter halos point to a substantial density enhancement near the center. This means that, e.g., the γ-ray signals from neutralino dark matter annihilations would be significantly enhanced compared to old estimates based on an isothermal sphere model with large core radius. Another important development concerns new detectors, both space- and ground-based, which will cover the window between 50 and 300 GeV where presently no cosmic γ-ray data are available. Thirdly, new calculations of the γ-ray line signal (a sharp spike of 10−3 relative width) from neutralino annihilations have revealed a hitherto neglected contribution which, for heavy higgsino-like neutralinos, gives an annihilation rate an order of magnitude larger than previously predicted. We make a detailed phenomenological study of the possible detection rates given these three pieces of new information. We show that the proposed upgrade of the Whipple telescope will make it sensitive to a region of parameter space, with substantial improvements possible with the planned new generation of Air Cherenkov Telescope Arrays. We also comment on the potential of the GLAST satellite detector. An evaluation of the continuum γ-rays produced in neutralino annihilations into the main modes is also done. It is shown that a combination of high-rate models and very peaked halo models are already severely constrained by existing data.
0

A novel determination of the local dark matter density

Riccardo Catena et al.Aug 1, 2010
We present a novel study on the problem of constructing mass models for the Milky Way, concentrating on features regarding the dark matter halo component. We have considered a variegated sample of dynamical observables for the Galaxy, including several results which have appeared recently, and studied a 7- or 8-dimensional parameter space - defining the Galaxy model - by implementing a Bayesian approach to the parameter estimation based on a Markov Chain Monte Carlo method. The main result of this analysis is a novel determination of the local dark matter halo density which, assuming spherical symmetry and either an Einasto or an NFW density profile is found to be around 0.39 GeV cm$^{-3}$ with a 1-$\sigma$ error bar of about 7%; more precisely we find a $\rho_{DM}(R_0) = 0.385 \pm 0.027 \rm GeV cm^{-3}$ for the Einasto profile and $\rho_{DM}(R_0) = 0.389 \pm 0.025 \rm GeV cm^{-3}$ for the NFW. This is in contrast to the standard assumption that $\rho_{DM}(R_0)$ is about 0.3 GeV cm$^{-3}$ with an uncertainty of a factor of 2 to 3. A very precise determination of the local halo density is very important for interpreting direct dark matter detection experiments. Indeed the results we produced, together with the recent accurate determination of the local circular velocity, should be very useful to considerably narrow astrophysical uncertainties on direct dark matter detection.