KK
Kathryn Kreckel
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
72
(97% Open Access)
Cited by:
2,630
h-index:
37
/
i10-index:
96
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

THE CO-TO-H2CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES

Karin Sandström et al.Oct 8, 2013
We present ∼kiloparsec spatial resolution maps of the CO-to-H2 conversion factor (αCO) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for αCO and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H i column density to solve for both αCO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, 12CO J = (2–1) maps from the IRAM 30 m large program HERACLES, and H i 21 cm line maps from THINGS. We use a fixed ratio between the (2–1) and (1–0) lines to present our αCO results on the more typically used 12CO J = (1–0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for αCO and the DGR. On average, αCO = 3.1 M☉ pc−2 (K km s−1)−1 for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of αCO as a function of galactocentric radius. However, most galaxies exhibit a lower αCO value in the central kiloparsec—a factor of ∼2 below the galaxy mean, on average. In some cases, the central αCO value can be factors of 5–10 below the standard Milky Way (MW) value of αCO, MW = 4.4 M☉ pc−2 (K km s−1)−1. While for αCO we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate αCO for studies of nearby galaxies.
2

The lifecycle of molecular clouds in nearby star-forming disc galaxies

Mélanie Chevance et al.Dec 19, 2019
It remains a major challenge to derive a theory of cloud-scale ($\lesssim100$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially-resolved ($\sim100$ pc) CO-to-H$\alpha$ flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically 10-30 Myr, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $\Sigma_{\rm H_2}\geqslant8$M$_{\odot}$pc$^{-2}$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $\Sigma_{\rm H_2}\leqslant8$M$_{\odot}$pc$^{-2}$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H$\alpha$ (75-90% of the cloud lifetime), GMCs disperse within just 1-5 Myr once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4-10% These results show that galactic star formation is governed by cloud-scale, environmentally-dependent, dynamical processes driving rapid evolutionary cycling. GMCs and HII regions are the fundamental units undergoing these lifecycles, with mean separations of 100-300 pc in star-forming discs. Future work should characterise the multi-scale physics and mass flows driving these lifecycles.
2
Paper
Citation186
0
Save
0

PHANGS–ALMA: Arcsecond CO(2–1) Imaging of Nearby Star-forming Galaxies

Adam Leroy et al.Nov 24, 2021
Abstract We present PHANGS–ALMA, the first survey to map CO J = 2 → 1 line emission at ∼1″ ∼100 pc spatial resolution from a representative sample of 90 nearby ( d ≲ 20 Mpc) galaxies that lie on or near the z = 0 “main sequence” of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS–ALMA, each beam reaches the size of a typical individual giant molecular cloud, so that these data can be used to measure the demographics, life cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z = 0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, Atacama Large Millimeter/submillimeter Array (ALMA) observations, and characteristics of the delivered data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with MUSE on the Very Large Telescope, the Hubble Space Telescope, AstroSat, the Very Large Array, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle 5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1″ resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS–ALMA public data release.
0
Citation173
0
Save
0

Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances

Gagandeep Anand et al.Nov 25, 2020
ABSTRACT PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ∼20 Mpc. Combined with the PHANGS-ALMA, PHANGS-MUSE surveys and other multiwavelength data, the data set will provide an unprecedented look into the connections between young stars, H ii regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g. brightness to luminosity, angular to physical sizes of molecular clouds, star clusters and associations). PHANGS-HST has obtained parallel ACS imaging of the galaxy haloes in the F606W and F814W bands. Where possible, we use these parallel fields to derive tip of the red giant branch (TRGB) distances to these galaxies. In this paper, we present TRGB distances for 10 PHANGS galaxies from ∼4 to ∼15 Mpc, based on the first year of PHANGS-HST observations. Four of these represent the first published TRGB distance measurements (IC 5332, NGC 2835, NGC 4298, and NGC 4321), and seven of which are the best available distances to these targets. We also provide a compilation of distances for the 118 galaxies in the full PHANGS sample, which have been adopted for the first PHANGS-ALMA public data release.
0

The PHANGS-MUSE survey

Éric Emsellem et al.Mar 1, 2022
We present the PHANGS-MUSE survey, a programme that uses the MUSE integral field spectrograph at the ESO VLT to map 19 massive (9.4 < log( M ⋆ / M ⊙ )< 11.0) nearby ( D ≲ 20 Mpc) star-forming disc galaxies. The survey consists of 168 MUSE pointings (1′ by 1′ each) and a total of nearly 15 × 10 6 spectra, covering ∼1.5 × 10 6 independent spectra. PHANGS-MUSE provides the first integral field spectrograph view of star formation across different local environments (including galaxy centres, bars, and spiral arms) in external galaxies at a median resolution of 50 pc, better than the mean inter-cloud distance in the ionised interstellar medium. This ‘cloud-scale’ resolution allows detailed demographics and characterisations of H II regions and other ionised nebulae. PHANGS-MUSE further delivers a unique view on the associated gas and stellar kinematics and provides constraints on the star-formation history. The PHANGS-MUSE survey is complemented by dedicated ALMA CO(2–1) and multi-band HST observations, therefore allowing us to probe the key stages of the star-formation process from molecular clouds to H II regions and star clusters. This paper describes the scientific motivation, sample selection, observational strategy, data reduction, and analysis process of the PHANGS-MUSE survey. We present our bespoke automated data-reduction framework, which is built on the reduction recipes provided by ESO but additionally allows for mosaicking and homogenisation of the point spread function. We further present a detailed quality assessment and a brief illustration of the potential scientific applications of the large set of PHANGS-MUSE data products generated by our data analysis framework. The data cubes and analysis data products described in this paper represent the basis for the first PHANGS-MUSE public data release and are available in the ESO archive and via the Canadian Astronomy Data Centre.
0

Mapping Metallicity Variations across Nearby Galaxy Disks

Kathryn Kreckel et al.Dec 10, 2019
Abstract The distribution of metals within a galaxy traces the baryon cycle and the buildup of galactic disks, but the detailed gas phase metallicity distribution remains poorly sampled. We have determined the gas phase oxygen abundances for 7138 H ii regions across the disks of eight nearby galaxies using Very Large Telescope/Multi Unit Spectroscopic Explorer (MUSE) optical integral field spectroscopy as part of the PHANGS–MUSE survey. After removing the first-order radial gradients present in each galaxy, we look at the statistics of the metallicity offset (ΔO/H) and explore azimuthal variations. Across each galaxy, we find low ( σ = 0.03–0.05 dex) scatter at any given radius, indicative of efficient mixing. We compare physical parameters for those H ii regions that are 1 σ outliers toward both enhanced and reduced abundances. Regions with enhanced abundances have high ionization parameter, higher H α luminosity, lower H α velocity dispersion, younger star clusters, and associated molecular gas clouds showing higher molecular gas densities. This indicates recent star formation has locally enriched the material. Regions with reduced abundances show increased H α velocity dispersions, suggestive of mixing introducing more pristine material. We observe subtle azimuthal variations in half of the sample, but cannot always cleanly associate this with the spiral pattern. Regions with enhanced and reduced abundances are found distributed throughout the disk, and in half of our galaxies we can identify subsections of spiral arms with clearly associated metallicity gradients. This suggests spiral arms play a role in organizing and mixing the interstellar medium.
0

Star Formation Efficiency per Free-fall Time in nearby Galaxies

Dyas Utomo et al.Jul 10, 2018
We estimate the star formation efficiency per gravitational free fall time, $\epsilon_{\rm ff}$, from observations of nearby galaxies with resolution matched to the typical size of a Giant Molecular Cloud. This quantity, $\epsilon_{\rm ff}$, is theoretically important but so far has only been measured for Milky Way clouds or inferred indirectly in a few other galaxies. Using new, high resolution CO imaging from the PHANGS-ALMA survey, we estimate the gravitational free-fall time at 60 to 120 pc resolution, and contrast this with the local molecular gas depletion time to estimate $\epsilon_{\rm ff}$. Assuming a constant thickness of the molecular gas layer ($H = 100$ pc) across the whole sample, the median value of $\epsilon_{\rm ff}$ in our sample is $0.7\%$. We find a mild scale-dependence, with higher $\epsilon_{\rm ff}$ measured at coarser resolution. Individual galaxies show different values of $\epsilon_{\rm ff}$, with the median $\epsilon_{\rm ff}$ ranging from $0.3\%$ to $2.6\%$. We find the highest $\epsilon_{\rm ff}$ in our lowest mass targets, reflecting both long free-fall times and short depletion times, though we caution that both measurements are subject to biases in low mass galaxies. We estimate the key systematic uncertainties, and show the dominant uncertainty to be the estimated line-of-sight depth through the molecular gas layer and the choice of star formation tracers.
0

Molecular Gas Properties on Cloud Scales across the Local Star-forming Galaxy Population

Jiayi Sun et al.Sep 1, 2020
Abstract Using the PHANGS–ALMA CO(2–1) survey, we characterize molecular gas properties on ∼100 pc scales across 102,778 independent sightlines in 70 nearby galaxies. This yields the best synthetic view of molecular gas properties on cloud scales across the local star-forming galaxy population obtained to date. Consistent with previous studies, we observe a wide range of molecular gas surface densities (3.4 dex), velocity dispersions (1.7 dex), and turbulent pressures (6.5 dex) across the galaxies in our sample. Under simplifying assumptions about subresolution gas structure, the inferred virial parameters suggest that the kinetic energy of the molecular gas typically exceeds its self-gravitational binding energy at ∼100 pc scales by a modest factor (1.3 on average). We find that the cloud-scale surface density, velocity dispersion, and turbulent pressure (1) increase toward the inner parts of galaxies, (2) are exceptionally high in the centers of barred galaxies (where the gas also appears less gravitationally bound), and (3) are moderately higher in spiral arms than in inter-arm regions. The galaxy-wide averages of these gas properties also correlate with the integrated stellar mass, star formation rate, and offset from the star-forming main sequence of the host galaxies. These correlations persist even when we exclude regions with extraordinary gas properties in galaxy centers, which contribute significantly to the inter-galaxy variations. Our results provide key empirical constraints on the physical link between molecular cloud populations and their galactic environment.
0
Citation78
0
Save
0

A 50 pc Scale View of Star Formation Efficiency across NGC 628

Kathryn Kreckel et al.Aug 14, 2018
Abstract Star formation is a multi-scale process that requires tracing cloud formation and stellar feedback within the local (≲kpc) and global galaxy environment. We present first results from two large observing programs on the Atacama Large Millimeter/submillimeter Array (ALMA)and the Very Large Telescope/Multi Unit Spectroscopic Explorer(VLT/MUSE), mapping cloud scales (1″ = 47 pc) in both molecular gas and star-forming tracers across 90 kpc 2 of the central disk of NGC 628 to probe the physics of star formation. Systematic spatial offsets between molecular clouds and H ii regions illustrate the time evolution of star-forming regions. Using uniform sampling of both maps on 50–500 pc scales, we infer molecular gas depletion times of 1–3 Gyr, but also find that the increase of scatter in the star formation relation on small scales is consistent with gas and H ii regions being only weakly correlated at the cloud (50 pc) scale. This implies a short overlap phase for molecular clouds and H ii regions, which we test by directly matching our catalog of 1502 H ii regions and 738 GMCs. We uncover only 74 objects in the overlap phase, and we find depletion times >1 Gyr, significantly longer than previously reported for individual star-forming clouds in the Milky Way. Finally, we find no clear trends that relate variations in the depletion time observed on 500 pc scales to physical drivers (metallicity, molecular and stellar-mass surface density, molecular gas boundedness) on 50 pc scales.
0

PHANGS–ALMA Data Processing and Pipeline

Adam Leroy et al.Jul 1, 2021
Abstract We describe the processing of the PHANGS–ALMA survey and present the PHANGS–ALMA pipeline, a public software package that processes calibrated interferometric and total power data into science-ready data products. PHANGS–ALMA is a large, high-resolution survey of CO(2–1) emission from nearby galaxies. The observations combine ALMA’s main 12 m array, the 7 m array, and total power observations, and use mosaics of dozens to hundreds of individual pointings. We describe the processing of the u − v data, imaging and deconvolution, linear mosaicking, combining interferometer and total power data, noise estimation, masking, data product creation, and quality assurance. Our pipeline has a general design and can also be applied to Very Large Array and ALMA observations of other spectral lines and continuum emission. We highlight our recipe for deconvolution of complex spectral line observations, which combines multiscale clean, single-scale clean, and automatic mask generation in a way that appears robust and effective. We also emphasize our two-track approach to masking and data product creation. We construct one set of “broadly masked” data products, which have high completeness but significant contamination by noise, and another set of “strictly masked” data products, which have high confidence but exclude faint, low signal-to-noise emission. Our quality assurance tests, supported by simulations, demonstrate that 12 m+7 m deconvolved data recover a total flux that is significantly closer to the total power flux than the 7 m deconvolved data alone. In the appendices, we measure the stability of the ALMA total power calibration in PHANGS–ALMA and test the performance of popular short-spacing correction algorithms.
0
Paper
Citation74
0
Save
Load More