TM
Thierry Maerschalk
Author with expertise in Particle Physics and High-Energy Collider Experiments
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
2,826
h-index:
69
/
i10-index:
252
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Particle-flow reconstruction and global event description with the CMS detector

A. Sirunyan et al.Oct 6, 2017
The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic tau decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8 TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions.
0

Event generator tunes obtained from underlying event and multiparton scattering measurements

V. Khachatryan et al.Mar 1, 2016
New sets of parameters (“tunes”) for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton–proton ( $$\mathrm {p}\mathrm {p}$$ ) data at $$\sqrt{s} = 7\,\text {TeV} $$ and to UE proton–antiproton ( $$\mathrm {p}\overline{\mathrm{p}} $$ ) data from the CDF experiment at lower $$\sqrt{s}$$ , are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton–proton collisions at 13 $$\,\text {TeV}$$ . In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to “minimum bias” (MB) events, multijet, and Drell–Yan ( $$ \mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{Z}/ \gamma ^* \rightarrow $$ lepton-antilepton+jets) observables at 7 and 8 $$\,\text {TeV}$$ , as well as predictions for MB and UE observables at 13 $$\,\text {TeV}$$ .
0

Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

V. Khachatryan et al.Feb 22, 2017
Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 inverse-femtobarns collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity eta and transverse momentum pT are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) R, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15-20% at 30 GeV, about 10% at 100 GeV, and 5% at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Several new techniques are used to account for the various sources of jet energy scale corrections, and a full set of uncertainties, and their correlations, are provided. The final uncertainties on the jet energy scale are below 3% across the phase space considered by most analyses (pT > 30 GeV and abs(eta) < 5.0). In the barrel region (abs(eta) < 1.3) an uncertainty below 1% for pT > 30 GeV is reached, when excluding the jet flavor uncertainties, which are provided separately for different jet flavors. A new benchmark for jet energy scale determination at hadron colliders is achieved with 0.32% uncertainty for jets with pT of the order of 165-330 GeV, and abs(eta) < 0.8.
0

Operational Experience With the GEM Detector Assembly Lines for the CMS Forward Muon Upgrade

D. Abbaneo et al.Nov 1, 2018
The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement.
0
Citation3
0
Save