XT
Xinjie Tong
Author with expertise in Catalytic Valorization of Lignin for Renewable Chemicals
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
143
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Experimental and Molecular Dynamics Simulation Study of the Effects of Lignin Dimers on the Gel-to-Fluid Phase Transition in DPPC Bilayers

Xinjie Tong et al.Sep 5, 2019
High resolution differential scanning calorimetry (DSC) and molecular dynamics (MD) simulations were used to investigate the effect of three lignin dimers on the gel to fluid phase transition in DPPC lipid bilayers. The goal of this research is to begin to understand the partitioning of model lignin dimers into lipid bilayers and its effects on the gel to fluid transition temperature (Tm). The long-term objective is to establish structure-function relationships for well-defined lignin derivatives at biologically relevant surfaces. This work uses a newly synthesized guiacylglycerol guaiacol ester with a hydroxypropenyl (HOC3H4-) group resembling natural lignin (GG dimer), compared with a truncated GG dimer without the HOC3H4- and benzyl-modified GG dimers. The DSC results show that the dimer most like natural lignin (with a hydroxypropenyl tail) has log K = 2.72 ± 0.05, and MD simulations show that it associates with the headgroups of the lipid but does not penetrate strongly into the interior of the bilayer. Therefore, this dimer has little effect on the Tm value. In contrast, the truncated dimer, which has been used as a representative GG dimer in prior studies, partitions into the bilayer, as seen in MD simulations, and shifts Tm because of its increased lipophilicity (DSC log K = 3.45 ± 0.20). Similarly, modification of the natural GG dimer by benzylation of the phenol makes it lipophilic (DSC log K = 3.38 ± 0.28), causing it to partition into the bilayer, as seen in MD simulations and shift Tm. In MD, we capture the transition from gel to fluid phase by defining and analyzing a normalized deuterium order parameter averaged over all carbon atoms located in the middle of the lipid tails. In this way, the phase transition can be clearly observed and, importantly, MD results show the same trend of transition temperature shifts as the DSC results. Furthermore, we compare partition coefficients estimated from free energy profiles calculated in MD to those obtained from experiment and they are in qualitative agreement. The success at predicting the structural effects of lignin dimers on lipid bilayers suggests that MD simulations can be used in the future to screen the interactions of lignin oligomers and their derivatives with lipid bilayers.
3
Citation14
0
Save
2

Interaction of lignin dimers with model cell membranes: A quartz crystal microbalance and molecular dynamics simulation study

Mahsa Moradipour et al.Jul 1, 2021
A study of the interaction between cell membranes and small molecules derived from lignin, a protective phenolic biopolymer found in vascular plants, is crucial for identifying their potential as pharmacological and toxicological agents. In this work, the interactions of model cell membranes [supported 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers] are compared for three βO4 dimers of coniferyl alcohol (G lignin monomer): guaiacylglycerol guaiacol ester with a hydroxypropenyl (HOC3H4-) tail (G-βO4'-G), a truncated GG dimer without HOC3H4- (G-βO4'-truncG), and a benzylated GG dimer (benzG-βO4'-G). The uptake of the lignin dimers (per mass of lipid) and the energy dissipation (a measure of bilayer disorder) are higher for benzG-βO4'-G and G-βO4'-truncG than those for G-βO4'-G in the gel-phase DPPC bilayer, as measured using quartz crystal microbalance with dissipation (QCM-D). A similar uptake of G-βO4'-truncG is observed for a fluid-phase bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine, suggesting that the effect of the bilayer phase on dimer uptake is minimal. The effects of increasing lignin dimer concentration are examined through an analysis of density profiles, potential of mean force curves, lipid order parameters, and bilayer area compressibilities (disorder) in the lipid bilayers obtained from molecular dynamics simulations. Dimer distributions and potentials of mean force indicate that the penetration into bilayers is higher for benzG-βO4'-G and G-βO4'-truncG than that for G-βO4'-G, consistent with the QCM-D results. Increased lipid tail disorder due to dimer penetration leads to a thinning and softening of the bilayers. Minor differences in the structure of lignin derivatives (such as truncating the hydroxypropenyl tail) have significant impacts on their ability to penetrate lipid bilayers.
2
Citation4
0
Save
4

Single Nucleotides Moving through Nanoslits Composed of Self-Assembled Monolayers via Equilibrium and Nonequilibrium Molecular Dynamics

Xinjie Tong et al.Jan 22, 2021
Nonequilibrium molecular dynamics (MD) simulations were used to study the effect of three chemical surface groups on the separation of DNA mononucleotide velocity (or time-of-flight) distributions as they pass through nanoslits. We used nanoslits functionalize with self-assembled monolayers (SAMs) since they have relatively smooth surfaces. The SAM molecules were terminated with either a methyl, methylformyl, or phenoxy group, and the nucleotides were driven electrophoretically with an electric field intensity of 0.1 V/nm in slits about 3 nm wide. Although these large driving forces are physically difficult to achieve experimentally, the simulations are still of great value as they provide molecular level insight into nucleotide translocation events and allow comparison of different surfaces. Nucleotides adsorbed and desorbed from the slit surface multiple times during the simulations. The required slit length for 99% accuracy in identifying the deoxynucleotide monophosphates (dNMPs), based on the separation of the distributions of time of flight, was used to compare the surfaces with shorter lengths indicating more efficient separation. The lengths were 6.5 μm for phenoxy-terminated SAMs, 270 μm for methylformyl-terminated SAMs, and 2400 μm for methyl-terminated SAMs. Our study showed that a slit with a section with methyl termination and the second section with methylformyl termination lead to a required length of 120 μm, which was significantly lower than for only a methylformyl- or methyl-terminated surface.
4
Citation2
0
Save
0

Large Scale Hierarchical Industrial Demand Time-Series Forecasting incorporating Sparsity

Harshavardhan Kamarthi et al.Aug 24, 2024
Hierarchical time-series forecasting (HTSF) is an important problem for many real-world business applications where the goal is to simultaneously forecast multiple time-series that are related to each other via a hierarchical relation. Recent works, however, do not address two important challenges that are typically observed in many demand forecasting applications at large companies. First, many time-series at lower levels of the hierarchy have high sparsity i.e., they have a significant number of zeros. Most HTSF methods do not address this varying sparsity across the hierarchy. Further, they do not scale well to the large size of the real-world hierarchy typically unseen in benchmarks used in literature. We resolve both these challenges by proposing HAILS, a novel probabilistic hierarchical model that enables accurate and calibrated probabilistic forecasts across the hierarchy by adaptively modeling sparse and dense time-series with different distributional assumptions and reconciling them to adhere to hierarchical constraints. We show the scalability and effectiveness of our methods by evaluating them against real-world demand forecasting datasets. We deploy HAILS at a large chemical manufacturing company for a product demand forecasting application with over ten thousand products and observe a significant 8.5% improvement in forecast accuracy and 23% better improvement for sparse time-series. The enhanced accuracy and scalability make HAILS a valuable tool for improved business planning and customer experience.