TR
Talal Rahwan
Author with expertise in Detection and Prevention of Phishing Attacks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
599
h-index:
31
/
i10-index:
69
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

China and the U.S. produce more impactful AI research when collaborating together

Bedoor AlShebli et al.Nov 19, 2024
Artificial Intelligence (AI) has become a disruptive technology, promising to grant a significant economic and strategic advantage to nations that harness its power. China, with its recent push towards AI adoption, is challenging the U.S.'s position as the global leader in this field. Given AI's massive potential, as well as the fierce geopolitical tensions between China and the U.S., several recent policies have been put in place to discourage AI scientists from migrating to, or collaborating with, the other nation. Nevertheless, the extent of talent migration and cross-border collaboration are not fully understood. Here, we analyze a dataset of over 350,000 AI scientists and 5,000,000 AI papers. We find that since 2000, China and the U.S. have led the field in terms of impact, novelty, productivity, and workforce. Most AI scientists who move to China come from the U.S., and most who move to the U.S. come from China, highlighting a notable bidirectional talent migration. Moreover, the vast majority of those moving in either direction have Asian ancestry. Upon moving, those scientists continue to collaborate frequently with those in the origin country. Although the number of collaborations between the two countries has increased since the dawn of the millennium, such collaborations continue to be relatively rare. A matching experiment reveals that the two countries have always been more impactful when collaborating than when each works without the other. These findings suggest that instead of suppressing cross-border migration and collaboration between the two nations, the science could benefit from promoting such activities.
0
Citation1
0
Save
0

PoLYTC: a novel BERT-based classifier to detect political leaning of YouTube videos based on their titles

Nouar AlDahoul et al.Jun 5, 2024
Abstract Over two-thirds of the U.S. population uses YouTube, and a quarter of U.S. adults regularly receive their news from it. Despite the massive political content available on the platform, to date, no classifier has been proposed to classify the political leaning of YouTube videos. The only exception is a classifier that requires extensive information about each video (rather than just the title) and classifies the videos into just three classes (rather than the widely-used categorization into six classes). To fill this gap, “PoLYTC” (Political Leaning YouTube Classifier) is proposed to classify YouTube videos based on their titles into six political classes. PoLYTC utilizes a large language model, namely BERT, and is fine-tuned on a public dataset of 11.5 million YouTube videos. Experiments reveal that the proposed solution achieves high accuracy (75%) and high F1-score (77%), thereby outperforming the state of the art. To further validate the solution’s classification performance, several videos were collected from numerous prominent news agencies’ YouTube channels, such as Fox News and The New York Times, which have widely known political leanings. These videos were classified based on their titles, and the results have shown that, in the vast majority of cases, the predicted political leaning matches that of the news agency. PoLYTC can help YouTube users make informed decisions about which videos to watch and can help researchers analyze the political content on YouTube.
0

Perception of experience influences altruism and perception of agency influences trust in human–machine interactions

Mayada Oudah et al.May 30, 2024
Abstract As robots become increasingly integrated into social economic interactions, it becomes crucial to understand how people perceive a robot’s mind. It has been argued that minds are perceived along two dimensions: experience, i.e., the ability to feel, and agency, i.e., the ability to act and take responsibility for one’s actions. However, the influence of these perceived dimensions on human–machine interactions, particularly those involving altruism and trust, remains unknown. We hypothesize that the perception of experience influences altruism, while the perception of agency influences trust. To test these hypotheses, we pair participants with bot partners in a dictator game (to measure altruism) and a trust game (to measure trust) while varying the bots’ perceived experience and agency, either by manipulating the degree to which the bot resembles humans, or by manipulating the description of the bots’ ability to feel and exercise self-control. The results demonstrate that the money transferred in the dictator game is influenced by the perceived experience, while the money transferred in the trust game is influenced by the perceived agency, thereby confirming our hypotheses. More broadly, our findings support the specificity of the mind hypothesis: Perceptions of different dimensions of the mind lead to different kinds of social behavior.