Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
SH
Stefan Hecht
Author with expertise in Molecular Electronic Devices and Systems
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
20
(35% Open Access)
Cited by:
6,973
h-index:
77
/
i10-index:
246
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science

Stefan Hecht et al.Jan 4, 2001
The convergence of our understanding of structure-property relationships for selected biological macromolecules and our increased ability to prepare large synthetic macromolecules with a structural precision that approaches that of proteins have spawned a new area of research where chemistry and materials science join with biology. While evolution has enabled nature to perfect processes involving energy transfer or catalysis by incorporating functions such as self-replication and repair, synthetic macromolecules still depend on our synthetic skills and abilities to mesh structure and function in our designs. Clearly, we can take advantage of our understanding of natural systems to mimic the structural features that lead to optimized function. For example, numerous biological systems make use of the concept of site isolation whereby an active center or catalytic site is encapsulated, frequently within a protein, to afford properties that would not be encountered in the bulk state. The ability of the dendritic shell to encapsulate functional core moieties and to create specific site-isolated nanoenvironments, and thereby affect molecular properties, has been explored. By utilizing the distinct properties of the dendrimer architecture active sites that have either photophysical, photochemical, electrochemical, or catalytic functions have been placed at the core. Applying the general concept of site isolation to problems in materials research is likely to prove extremely fruitful in the long term, with short-term applications in areas such as the construction of improved optoelectronic devices. This review focuses on the evolution of a natural design principle that contributes to bridging the gap between biology and materials science. The recent progress in the synthesis of dendrimer-encapsulated molecules and their study by a variety of techniques is discussed. These investigations have implications that range from the preliminary design of artificial enzymes, catalysts, or light-harvesting systems to the construction of insulated molecular wires, light-emitting diodes, and fiber optics.
0

ortho‐Fluoroazobenzenes: Visible Light Switches with Very Long‐Lived Z Isomers

Christopher Knie et al.Oct 28, 2014
Improving the photochemical properties of molecular photoswitches is crucial for the development of light-responsive systems in materials and life sciences. ortho-Fluoroazobenzenes are a new class of rationally designed photochromic azo compounds with optimized properties, such as the ability to isomerize with visible light only, high photoconversions, and unprecedented robust bistable character. Introducing σ-electron-withdrawing F atoms ortho to the NN unit leads to both an effective separation of the n→π* bands of the E and Z isomers, thus offering the possibility of using these two transitions for selectively inducing E/Z isomerizations, and greatly enhanced thermal stability of the Z isomers. Additional para-electron-withdrawing groups (EWGs) work in concert with ortho-F atoms, giving rise to enhanced separation of the n→π* transitions. A comprehensive study of the effect of substitution on the key photochemical properties of ortho-fluoroazobenzenes is reported herein. In particular, the position, number, and nature of the EWGs have been varied, and the visible light photoconversions, quantum yields of isomerization, and thermal stabilities have been measured and rationalized by DFT calculations.
0

Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend

Tim Leydecker et al.Jun 17, 2016
Organic nanomaterials are attracting a great deal of interest for use in flexible electronic applications such as logic circuits, displays and solar cells. These technologies have already demonstrated good performances, but flexible organic memories are yet to deliver on all their promise in terms of volatility, operational voltage, write/erase speed, as well as the number of distinct attainable levels. Here, we report a multilevel non-volatile flexible optical memory thin-film transistor based on a blend of a reference polymer semiconductor, namely poly(3-hexylthiophene), and a photochromic diarylethene, switched with ultraviolet and green light irradiation. A three-terminal device featuring over 256 (8 bit storage) distinct current levels was fabricated, the memory states of which could be switched with 3 ns laser pulses. We also report robustness over 70 write-erase cycles and non-volatility exceeding 500 days. The device was implemented on a flexible polyethylene terephthalate substrate, validating the concept for integration into wearable electronics and smart nanodevices.
Load More