SW
Sang Won
Author with expertise in Neural Interface Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(75% Open Access)
Cited by:
8,023
h-index:
39
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex

Ki Yu et al.Apr 18, 2016
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required. Arrays of bioresorbable, highly doped silicon electrodes with multiplexing capabilities are used as electrocorticography sensors to perform in vivo, reliable acute and chronic recordings for up to one month before dissolving in the body.
0

A wireless closed-loop system for optogenetic peripheral neuromodulation

Aaron Mickle et al.Dec 21, 2018
The fast-growing field of bioelectronic medicine aims to develop engineered systems that can relieve clinical conditions by stimulating the peripheral nervous system1–5. This type of technology relies largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis (also known as bladder pain syndrome)4,6,7. Conventional, continuous stimulation protocols, however, can cause discomfort and pain, particularly when treating symptoms that can be intermittent (for example, sudden urinary urgency)8. Direct physical coupling of electrodes to the nerve can lead to injury and inflammation9–11. Furthermore, typical therapeutic stimulators target large nerve bundles that innervate multiple structures, resulting in a lack of organ specificity. Here we introduce a miniaturized bio-optoelectronic implant that avoids these limitations by using (1) an optical stimulation interface that exploits microscale inorganic light-emitting diodes to activate opsins; (2) a soft, high-precision biophysical sensor system that allows continuous measurements of organ function; and (3) a control module and data analytics approach that enables coordinated, closed-loop operation of the system to eliminate pathological behaviours as they occur in real-time. In the example reported here, a soft strain gauge yields real-time information on bladder function in a rat model. Data algorithms identify pathological behaviour, and automated, closed-loop optogenetic neuromodulation of bladder sensory afferents normalizes bladder function. This all-optical scheme for neuromodulation offers chronic stability and the potential to stimulate specific cell types. A closed-loop implantable bioelectronic device that can modulate peripheral neuronal activity is used to improve bladder function in a rat model of cystitis.
0
Citation407
0
Save
0

A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities

Yu Jeong et al.Oct 1, 2017
This paper introduces a liquid-metal integrated system that combines soft electronics materials and engineering designs with advanced near-field-communication (NFC) functionality for human motion sensing. All of the active components, that is, strain sensor, antenna and interconnections, in this device are made of liquid metal, and the device has unique gel-like characteristics and stretchability. Patterning procedures based on selective wetting properties of the reduced GaInSn enable a skin-attachable, miniaturized layout, in which the diameter of the device is less than 2 cm. Electromechanical characterization of the strain sensor and antenna reveals their behaviors under large uniaxial tensile and compressive strains, as well as more complex modes of deformation. Demonstrations of these devices involve their use in monitoring various human motions in a purely wireless fashion; examples include wrist flexion, movements of the vocal cord and finger motion. This simple platform has potential for use in human–machine interfaces for prosthetic control and other applications. A battery-free sensor that wirelessly transmits data while attached to skin relies on unique liquid-gallium materials for its success. Unlike liquid mercury, gallium is safe to handle in ambient conditions and hence is suitable for use in devices that seek to conform to the soft contours of the human body while remaining conductive. Jeong Sook Ha from Korea University and colleagues designed special patterns in polydimethylsiloxane films to create a liquid-metal strain sensor with a built-in antenna. By removing an outer oxide crust that adheres to nearly any surface, the team solved problems associated with patterning difficult-to-treat bare liquid metals. They demonstrated that changes in resistance from the gel-like sensor could accurately measure wrist motion, vocal cord movement associated with speech and the condition of finger joints. A gallium-based liquid metal integrated system that combines soft electronics materials and engineering designs with advanced near-field-communication (NFC) functionality is reported. Electro-mechanical characterization of the device reveals their behaviors under large uniaxial tensile and compressive strains, as well as more complex modes of deformation. Demonstrations of these devices involve their use in monitoring of various human motions in a purely wireless fashion.
0

Fully Biodegradable Microsupercapacitor for Power Storage in Transient Electronics

Geumbee Lee et al.May 23, 2017
In this work, the authors report materials, fabrication strategies, and applications of biodegradable microsupercapacitors (MSCs) built using water‐soluble (i.e., physically transient) metal (W, Fe, and Mo) electrodes, a biopolymer, hydrogel electrolyte (agarose gel), and a biodegradable poly(lactic‐ co ‐glycolic acid) substrate, encapsulated with polyanhydride. During repetitive charge/discharge cycles, the electrochemical performance of these unusual MSCs is dramatically enhanced, following from the role of pseudocapacitance that originates from metal‐oxide coatings generated by electrochemical corrosion at the interface between the water‐soluble metal electrode and the hydrogel electrolyte. Systematic studies reveal the dissolution kinetics/behaviors of each individual component of the MSCs, as well as those of the integrated devices. An encapsulation strategy that involves control over the thickness, chemistry, and molecular weight of the constituent materials provides a versatile means to engineer desired functional lifetimes. Demonstration experiments illustrate potential applications of these biodegradable MSCs as transient sources of power in the operation of light‐emitting diodes and as charging capacitors in integrated circuits for wireless power harvesting.
Load More