FS
Feng Shao
Author with expertise in Multispectral and Hyperspectral Image Fusion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(30% Open Access)
Cited by:
993
h-index:
34
/
i10-index:
107
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Optimizing Multistage Discriminative Dictionaries for Blind Image Quality Assessment

Qiuping Jiang et al.Oct 25, 2017
State-of-the-art algorithms for blind image quality assessment (BIQA) typically have two categories. The first category approaches extract natural scene statistics (NSS) as features based on the statistical regularity of natural images. The second category approaches extract features by feature encoding with respect to a learned codebook. However, several problems need to be addressed in existing codebook-based BIQA methods. First, the high-dimensional codebook-based features are memory-consuming and have the risk of over-fitting. Second, there is a semantic gap between the constructed codebook by unsupervised learning and image quality. To address these problems, we propose a novel codebook-based BIQA method by optimizing multistage discriminative dictionaries (MSDDs). To be specific, MSDDs are learned by performing the label consistent K-SVD (LC-KSVD) algorithm in a stage-by-stage manner. For each stage, a new quality consistency constraint called "quality-discriminative regularization" term is introduced and incorporated into the reconstruction error term to form a unified objective function, which can be effectively solved by LC-KSVD for discriminative dictionary learning. Then, the latter stage takes the reconstruction residual data in the former stage as input based on which LC-KSVD is repeatedly performed until the final stage is reached. Once the MSDDs are learned, multistage feature encoding is performed to extract feature codes. Finally, the feature codes are concatenated across all stages and aggregated over the entire image for quality prediction via regression. The proposed method has been evaluated on five databases and experimental results well confirm its superiority over existing relevant BIQA methods.
0
Citation197
0
Save
3

Impact of Land Cover Composition and Structure on Air Temperature Based on the Local Climate Zone Scheme in Hangzhou, China

Hai Yan et al.Jul 21, 2021
At present, conflicts between urban development and the climate environment are becoming increasingly apparent under rapid urbanization in China. Revealing the dynamic mechanism and controlling factors of the urban outdoor thermal environment is the necessary theoretical preparation for regulating and improving the urban climate environment. Taking Hangzhou as an example and based on the local climate zones classification system, we investigated the effects of land cover composition and structure on temperature variability at the local scale. The measurement campaign was conducted within four local climate zones (LCZ 2, 4, 5, and LCZ 9) during 7 days in the summer of 2018. The results showed that the temperature difference within the respective LCZ was always below 1.1 °C and the mean temperature difference between LCZs caused by different surface physical properties was as high as 1.6 °C at night. Among four LCZs, LCZ 2 was always the hottest, and LCZ 9 was the coolest at night. In particular, the percentage of pervious surface was the most important land cover feature in explaining the air temperature difference. For both daytime and nighttime, increasing the percentage of pervious surface as well as decreasing the percentage of impervious surface and the percentage of building surface could lower the local temperature, with the strongest influence radius range from 120 m to 150 m. Besides, the temperature increased with the SVF increased at day and opposite at night.
3
Paper
Citation6
3
Save
0

Global-Local Collaborative Learning Network for Optical Remote Sensing Image Change Detection

Jinghui Li et al.Jun 27, 2024
Due to the widespread applications of change detection technology in urban change analysis, environmental monitoring, agricultural surveillance, disaster detection, and other domains, the task of change detection has become one of the primary applications of Earth orbit satellite remote sensing data. However, the analysis of dual-temporal change detection (CD) remains a challenge in high-resolution optical remote sensing images due to the complexities in remote sensing images, such as intricate textures, seasonal variations in imaging time, climatic differences, and significant differences in the sizes of various objects. In this paper, we propose a novel U-shaped architecture for change detection. In the encoding stage, a multi-branch feature extraction module is employed by combining CNN and transformer networks to enhance the network’s perception capability for objects of varying sizes. Furthermore, a multi-branch aggregation module is utilized to aggregate features from different branches, providing the network with global attention while preserving detailed information. For dual-temporal features, we introduce a spatiotemporal discrepancy perception module to model the context of dual-temporal images. Particularly noteworthy is the construction of channel attention and token attention modules based on the transformer attention mechanism to facilitate information interaction between multi-level features, thereby enhancing the network’s contextual awareness. The effectiveness of the proposed network is validated on three public datasets, demonstrating its superior performance over other state-of-the-art methods through qualitative and quantitative experiments.
0
0
Save
0

Perceptual Quality Assessment for Pansharpened Images Based on Deep Feature Similarity Measure

Zhenhua Zhang et al.Dec 10, 2024
Pan-sharpening aims to generate high-resolution (HR) multispectral (MS) images by fusing HR panchromatic (PAN) and low-resolution (LR) MS images covering the same area. However, due to the lack of real HR MS reference images, how to accurately evaluate the quality of a fused image without reference is challenging. On the one hand, most methods evaluate the quality of the fused image using the full-reference indices based on the simulated experimental data on the popular Wald’s protocol; however, this remains controversial to the full-resolution data fusion. On the other hand, existing limited no reference methods, most of which depend on manually crafted features, cannot fully capture the sensitive spatial/spectral distortions of the fused image. Therefore, this paper proposes a perceptual quality assessment method based on deep feature similarity measure. The proposed network includes spatial/spectral feature extraction and similarity measure (FESM) branch and overall evaluation network. The Siamese FESM branch extracts the spatial and spectral deep features and calculates the similarity of the corresponding pair of deep features to obtain the spatial and spectral feature parameters, and then, the overall evaluation network realizes the overall quality assessment. Moreover, we propose to quantify both the overall precision of all the training samples and the variations among different fusion methods in a batch, thereby enhancing the network’s accuracy and robustness. The proposed method was trained and tested on a large subjective evaluation dataset comprising 13,620 fused images. The experimental results suggested the effectiveness and the competitive performance.