GR
Günther Roelkens
Author with expertise in Silicon Photonics Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(53% Open Access)
Cited by:
2,376
h-index:
63
/
i10-index:
223
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An ultra-small, low-power, all-optical flip-flop memory on a silicon chip

Liu Liu et al.Jan 24, 2010
Ultra-small, low-power, all-optical switching and memory elements, such as all-optical flip-flops, as well as photonic integrated circuits of many such elements, are in great demand for all-optical signal buffering, switching and processing. Silicon-on-insulator is considered to be a promising platform to accommodate such photonic circuits in large-scale configurations. Through heterogeneous integration of InP membranes onto silicon-on-insulator, a single microdisk laser with a diameter of 7.5 µm, coupled to a silicon-on-insulator wire waveguide, is demonstrated here as an all-optical flip-flop working in a continuous-wave regime with an electrical power consumption of a few milliwatts, allowing switching in 60 ps with 1.8 fJ optical energy. The total power consumption and the device size are, to the best of our knowledge, the smallest reported to date at telecom wavelengths. This is also the only electrically pumped, all-optical flip-flop on silicon built upon complementary metal-oxide semiconductor technology. Scientists demonstrate that a single 7.5-μm-diameter microdisk laser coupled to a silicon-on-insulator wire waveguide can work as an all-optical flip-flop memory. Under a continuous bias of 3.5 mA, flip-flop operation is demonstrated using optical triggering pulses of 1.8 fJ and with a switching time of 60 ps. This device is attractive for on-chip all-optical signal buffering, switching, and processing.
0

Assessment on the Achievable Throughput of Multi-Band ITU-T G.652.D Fiber Transmission Systems

Alessio Ferrari et al.Apr 22, 2020
Fiber-optic multi-band transmission (MBT) aims at exploiting the low-loss spectral windows of single-mode fibers (SMFs) for data transport, expanding by ~11× the available bandwidth of C-band line systems and by ~5× C+L-band line systems'. MBT offers a high potential for cost-efficient throughput upgrades of optical networks, even in absence of available dark-fibers, as it utilizes more efficiently the existing infrastructures. This represents the main advantage compared to approaches such as multi-mode/-core fibers or spatial division multiplexing. Furthermore, the industrial trend is clear: the first commercial C+L-band systems are entering the market and research has moved toward the neighboring S-band. This article discusses the potential and challenges of MBT covering the ITU-T optical bands O → L. MBT performance is assessed by addressing the generalized SNR (GSNR) including both the linear and non-linear fiber propagation effects. Non-linear fiber propagation is taken into account by computing the generated non-linear interference by using the generalized Gaussian-noise (GGN) model, which takes into account the interaction of non-linear fiber propagation with stimulated Raman scattering (SRS), and in general considers wavelength-dependent fiber parameters. For linear effects, we hypothesize typical components' figures and discussion on components' limitations, such as transceivers,' amplifiers' and filters' are not part of this work. We focus on assessing the transmission throughput that is realistic to achieve by using feasible multi-band components without specific optimizations and implementation discussion. So, results are meant to address the potential throughput scaling by turning-on excess fiber transmission bands. As transmission fiber, we focus exclusively on the ITU-T G.652.D, since it is the most widely deployed fiber type worldwide and the mostly suitable to multi-band transmission, thanks to its ultra-wide low-loss single-mode high-dispersion spectral region. Similar analyses could be carried out for other single-mode fiber types. We estimate a total single-fiber throughput of 450 Tb/s over a distance of 50 km and 220 Tb/s over regional distances of 600 km: ~10× and 8× more than C-band transmission respectively and ~2.5× more than full C+L.
Load More