JB
Jonathan Bury
Author with expertise in Cancer Immunotherapy
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
587
h-index:
20
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comparing Computer-interpretable Guideline Models: A Case-study Approach

Mor Peleg et al.Jan 1, 2003
Many groups are developing computer-interpretable clinical guidelines (CIGs) for use during clinical encounters. CIGs use "Task-Network Models" for representation but differ in their approaches to addressing particular modeling challenges. We have studied similarities and differences between CIGs in order to identify issues that must be resolved before a consensus on a set of common components can be developed.We compared six models: Asbru, EON, GLIF, GUIDE, PRODIGY, and PROforma. Collaborators from groups that created these models represented, in their own formalisms, portions of two guidelines: American College of Chest Physicians cough guidelines [correction] and the Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.We compared the models according to eight components that capture the structure of CIGs. The components enable modelers to encode guidelines as plans that organize decision and action tasks in networks. They also enable the encoded guidelines to be linked with patient data-a key requirement for enabling patient-specific decision support.We found consensus on many components, including plan organization, expression language, conceptual medical record model, medical concept model, and data abstractions. Differences were most apparent in underlying decision models, goal representation, use of scenarios, and structured medical actions.We identified guideline components that the CIG community could adopt as standards. Some of the participants are pursuing standardization of these components under the auspices of HL7.
4

Using DNA sequencing data to quantify T cell fraction and therapy response

Robert Bentham et al.Sep 8, 2021
The immune microenvironment influences tumour evolution and can be both prognostic and predict response to immunotherapy1,2. However, measurements of tumour infiltrating lymphocytes (TILs) are limited by a shortage of appropriate data. Whole-exome sequencing (WES) of DNA is frequently performed to calculate tumour mutational burden and identify actionable mutations. Here we develop T cell exome TREC tool (T cell ExTRECT), a method for estimation of T cell fraction from WES samples using a signal from T cell receptor excision circle (TREC) loss during V(D)J recombination of the T cell receptor-α gene (TCRA (also known as TRA)). TCRA T cell fraction correlates with orthogonal TIL estimates and is agnostic to sample type. Blood TCRA T cell fraction is higher in females than in males and correlates with both tumour immune infiltrate and presence of bacterial sequencing reads. Tumour TCRA T cell fraction is prognostic in lung adenocarcinoma. Using a meta-analysis of tumours treated with immunotherapy, we show that tumour TCRA T cell fraction predicts immunotherapy response, providing value beyond measuring tumour mutational burden. Applying T cell ExTRECT to a multi-sample pan-cancer cohort reveals a high diversity of the degree of immune infiltration within tumours. Subclonal loss of 12q24.31–32, encompassing SPPL3, is associated with reduced TCRA T cell fraction. T cell ExTRECT provides a cost-effective technique to characterize immune infiltrate alongside somatic changes. A robust, cost-effective technique based on whole-exome sequencing data can be used to characterize immune infiltrates, relate the extent of these infiltrates to somatic changes in tumours, and enables prediction of tumour responses to immune checkpoint inhibition therapy.
4
Citation47
1
Save