AC
Amedeo Chiribiri
Author with expertise in Advanced Cardiac Imaging Techniques and Diagnostics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
31
(61% Open Access)
Cited by:
1,225
h-index:
45
/
i10-index:
171
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Percutaneous Revascularization for Ischemic Left Ventricular Dysfunction

Divaka Perera et al.Aug 27, 2022
Whether revascularization by percutaneous coronary intervention (PCI) can improve event-free survival and left ventricular function in patients with severe ischemic left ventricular systolic dysfunction, as compared with optimal medical therapy (i.e., individually adjusted pharmacologic and device therapy for heart failure) alone, is unknown.We randomly assigned patients with a left ventricular ejection fraction of 35% or less, extensive coronary artery disease amenable to PCI, and demonstrable myocardial viability to a strategy of either PCI plus optimal medical therapy (PCI group) or optimal medical therapy alone (optimal-medical-therapy group). The primary composite outcome was death from any cause or hospitalization for heart failure. Major secondary outcomes were left ventricular ejection fraction at 6 and 12 months and quality-of-life scores.A total of 700 patients underwent randomization - 347 were assigned to the PCI group and 353 to the optimal-medical-therapy group. Over a median of 41 months, a primary-outcome event occurred in 129 patients (37.2%) in the PCI group and in 134 patients (38.0%) in the optimal-medical-therapy group (hazard ratio, 0.99; 95% confidence interval [CI], 0.78 to 1.27; P = 0.96). The left ventricular ejection fraction was similar in the two groups at 6 months (mean difference, -1.6 percentage points; 95% CI, -3.7 to 0.5) and at 12 months (mean difference, 0.9 percentage points; 95% CI, -1.7 to 3.4). Quality-of-life scores at 6 and 12 months appeared to favor the PCI group, but the difference had diminished at 24 months.Among patients with severe ischemic left ventricular systolic dysfunction who received optimal medical therapy, revascularization by PCI did not result in a lower incidence of death from any cause or hospitalization for heart failure. (Funded by the National Institute for Health and Care Research Health Technology Assessment Program; REVIVED-BCIS2 ClinicalTrials.gov number, NCT01920048.).
0

Quantification of left atrial strain and strain rate using Cardiovascular Magnetic Resonance myocardial feature tracking: a feasibility study

Johannes Kowallick et al.Aug 11, 2014
Cardiovascular Magnetic Resonance myocardial feature tracking (CMR-FT) is a quantitative technique tracking tissue voxel motion on standard steady-state free precession (SSFP) cine images to assess ventricular myocardial deformation. The importance of left atrial (LA) deformation assessment is increasingly recognized and can be assessed with echocardiographic speckle tracking. However atrial deformation quantification has never previously been demonstrated with CMR. We sought to determine the feasibility and reproducibility of CMR-FT for quantitative derivation of LA strain and strain rate (SR) myocardial mechanics. 10 healthy volunteers, 10 patients with hypertrophic cardiomyopathy (HCM) and 10 patients with heart failure and preserved ejection fraction (HFpEF) were studied at 1.5 Tesla. LA longitudinal strain and SR parameters were derived from SSFP cine images using dedicated CMR-FT software (2D CPA MR, TomTec, Germany). LA performance was analyzed using 4- and 2-chamber views including LA reservoir function (total strain [εs], peak positive SR [SRs]), LA conduit function (passive strain [εe], peak early negative SR [SRe]) and LA booster pump function (active strain [εa], late peak negative SR [SRa]). In all subjects LA strain and SR parameters could be derived from SSFP images. There was impaired LA reservoir function in HCM and HFpEF (εs [%]: HCM 22.1 ± 5.5, HFpEF 16.3 ± 5.8, Controls 29.1 ± 5.3, p < 0.01; SRs [s-1]: HCM 0.9 ± 0.2, HFpEF 0.8 ± 0.3, Controls 1.1 ± 0.2, p < 0.05) and impaired LA conduit function as compared to healthy controls (εe [%]: HCM 10.4 ± 3.9, HFpEF 11.9 ± 4.0, Controls 21.3 ± 5.1, p < 0.001; SRe [s-1]: HCM -0.5 ± 0.2, HFpEF -0.6 ± 0.1, Controls -1.0 ± 0.3, p < 0.01). LA booster pump function was increased in HCM while decreased in HFpEF (εa [%]: HCM 11.7 ± 4.0, HFpEF 4.5 ± 2.9, Controls 7.8 ± 2.5, p < 0.01; SRa [s-1]: HCM -1.2 ± 0.4, HFpEF -0.5 ± 0.2, Controls -0.9 ± 0.3, p < 0.01). Observer variability was excellent for all strain and SR parameters on an intra- and inter-observer level as determined by Bland-Altman, coefficient of variation and intraclass correlation coefficient analyses. CMR-FT based atrial performance analysis reliably quantifies LA longitudinal strain and SR from standard SSFP cine images and discriminates between patients with impaired left ventricular relaxation and healthy controls. CMR-FT derived atrial deformation quantification seems a promising novel approach for the study of atrial performance and physiology in health and disease states.
1

Myocardial viability testing: all STICHed up, or about to be REVIVED?

M. Ryan et al.Nov 13, 2021
Patients with ischaemic left ventricular dysfunction frequently undergo myocardial viability testing. The historical model presumes that those who have extensive areas of dysfunctional-yet-viable myocardium derive particular benefit from revascularization, whilst those without extensive viability do not. These suppositions rely on the theory of hibernation and are based on data of low quality: taking a dogmatic approach may therefore lead to patients being refused appropriate, prognostically important treatment. Recent data from a sub-study of the randomized STICH trial challenges these historical concepts, as the volume of viable myocardium failed to predict the effectiveness of coronary artery bypass grafting. Should the Heart Team now abandon viability testing, or are new paradigms needed in the way we interpret viability? This state-of-the-art review critically examines the evidence base for viability testing, focusing in particular on the presumed interactions between viability, functional recovery, revascularization and prognosis which underly the traditional model. We consider whether viability should relate solely to dysfunctional myocardium or be considered more broadly and explore wider uses of viability testingoutside of revascularization decision-making. Finally, we look forward to ongoing and future randomized trials, which will shape evidence-based clinical practice in the future.
1

Viability and Outcomes With Revascularization or Medical Therapy in Ischemic Ventricular Dysfunction

Divaka Perera et al.Dec 1, 2023
Importance In the Revascularization for Ischemic Ventricular Dysfunction (REVIVED-BCIS2) trial, percutaneous coronary intervention (PCI) did not improve outcomes for patients with ischemic left ventricular dysfunction. Whether myocardial viability testing had prognostic utility for these patients or identified a subpopulation who may benefit from PCI remained unclear. Objective To determine the effect of the extent of viable and nonviable myocardium on the effectiveness of PCI, prognosis, and improvement in left ventricular function. Design, Setting, and Participants Prospective open-label randomized clinical trial recruiting between August 28, 2013, and March 19, 2020, with a median follow-up of 3.4 years (IQR, 2.3-5.0 years). A total of 40 secondary and tertiary care centers in the United Kingdom were included. Of 700 randomly assigned patients, 610 with left ventricular ejection fraction less than or equal to 35%, extensive coronary artery disease, and evidence of viability in at least 4 myocardial segments that were dysfunctional at rest and who underwent blinded core laboratory viability characterization were included. Data analysis was conducted from March 31, 2022, to May 1, 2023. Intervention Percutaneous coronary intervention in addition to optimal medical therapy. Main Outcomes and Measures Blinded core laboratory analysis was performed of cardiac magnetic resonance imaging scans and dobutamine stress echocardiograms to quantify the extent of viable and nonviable myocardium, expressed as an absolute percentage of left ventricular mass. The primary outcome of this subgroup analysis was the composite of all-cause death or hospitalization for heart failure. Secondary outcomes were all-cause death, cardiovascular death, hospitalization for heart failure, and improved left ventricular function at 6 months. Results The mean (SD) age of the participants was 69.3 (9.0) years. In the PCI group, 258 (87%) were male, and in the optimal medical therapy group, 277 (88%) were male. The primary outcome occurred in 107 of 295 participants assigned to PCI and 114 of 315 participants assigned to optimal medical therapy alone. There was no interaction between the extent of viable or nonviable myocardium and the effect of PCI on the primary or any secondary outcome. Across the study population, the extent of viable myocardium was not associated with the primary outcome (hazard ratio per 10% increase, 0.98; 95% CI, 0.93-1.04) or any secondary outcome. The extent of nonviable myocardium was associated with the primary outcome (hazard ratio, 1.07; 95% CI, 1.00-1.15), all-cause death, cardiovascular death, and improvement in left ventricular function. Conclusions and Relevance This study found that viability testing does not identify patients with ischemic cardiomyopathy who benefit from PCI. The extent of nonviable myocardium, but not the extent of viable myocardium, is associated with event-free survival and likelihood of improvement of left ventricular function. Trial Registration ClinicalTrials.gov Identifier: NCT01920048
1

Coronary Wave Intensity Analysis as an Invasive and Vessel-Specific Index of Myocardial Viability

M. Ryan et al.Dec 1, 2022
Coronary angiography and viability testing are the cornerstones of diagnosing and managing ischemic cardiomyopathy. At present, no single test serves both needs. Coronary wave intensity analysis interrogates both contractility and microvascular physiology of the subtended myocardium and therefore has the potential to fulfil the goal of completely assessing coronary physiology and myocardial viability in a single procedure. We hypothesized that coronary wave intensity analysis measured during coronary angiography would predict viability with a similar accuracy to late-gadolinium-enhanced cardiac magnetic resonance imaging.Patients with a left ventricular ejection fraction ≤40% and extensive coronary disease were enrolled. Coronary wave intensity analysis was assessed during cardiac catheterization at rest, during adenosine-induced hyperemia, and during low-dose dobutamine stress using a dual pressure-Doppler sensing coronary guidewire. Scar burden was assessed with cardiac magnetic resonance imaging. Regional left ventricular function was assessed at baseline and 6-month follow-up after optimization of medical-therapy±revascularization, using transthoracic echocardiography. The primary outcome was myocardial viability, determined by the retrospective observation of functional recovery.Forty participants underwent baseline physiology, cardiac magnetic resonance imaging, and echocardiography, and 30 had echocardiography at 6 months; 21/42 territories were viable on follow-up echocardiography. Resting backward compression wave energy was significantly greater in viable than in nonviable territories (-5240±3772 versus -1873±1605 W m-2 s-1, P<0.001), and had comparable accuracy to cardiac magnetic resonance imaging for predicting viability (area under the curve 0.812 versus 0.757, P=0.649); a threshold of -2500 W m-2 s-1 had 86% sensitivity and 76% specificity.Backward compression wave energy has accuracy similar to that of late-gadolinium-enhanced cardiac magnetic resonance imaging in the prediction of viability. Coronary wave intensity analysis has the potential to streamline the management of ischemic cardiomyopathy, in a manner analogous to the effect of fractional flow reserve on the management of stable angina.
0

Myocardial Blood Flow by Magnetic Resonance in Patients With Suspected Coronary Stenosis: Comparison to PET and Invasive Physiology

Laust Rasmussen et al.Jun 1, 2024
BACKGROUND: Despite recent guideline recommendations, quantitative perfusion (QP) estimates of myocardial blood flow from cardiac magnetic resonance (CMR) have only been sparsely validated. Furthermore, the additional diagnostic value of utilizing QP in addition to the traditional visual expert interpretation of stress-perfusion CMR remains unknown. The aim was to investigate the correlation between myocardial blood flow measurements estimated by CMR, positron emission tomography, and invasive coronary thermodilution. The second aim is to investigate the diagnostic performance of CMR-QP to identify obstructive coronary artery disease (CAD). METHODS: Prospectively enrolled symptomatic patients with >50% diameter stenosis on computed tomography angiography underwent dual-bolus CMR and positron emission tomography with rest and adenosine-stress myocardial blood flow measurements. Subsequently, an invasive coronary angiography (ICA) with fractional flow reserve and thermodilution-based coronary flow reserve was performed. Obstructive CAD was defined as both anatomically severe (>70% diameter stenosis on quantitative coronary angiography) or hemodynamically obstructive (ICA with fractional flow reserve ≤0.80). RESULTS: About 359 patients completed all investigations. Myocardial blood flow and reserve measurements correlated weakly between estimates from CMR-QP, positron emission tomography, and ICA-coronary flow reserve (r<0.40 for all comparisons). In the diagnosis of anatomically severe CAD, the interpretation of CMR-QP by an expert reader improved the sensitivity in comparison to visual analysis alone (82% versus 88% [ P =0.03]) without compromising specificity (77% versus 74% [ P =0.28]). In the diagnosis of hemodynamically obstructive CAD, the accuracy was only moderate for a visual expert read and remained unchanged when additional CMR-QP measurements were interpreted. CONCLUSIONS: CMR-QP correlates weakly to myocardial blood flow measurements by other modalities but improves diagnosis of anatomically severe CAD. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03481712.
0

Non-invasive electrocardiographic assessment of arrhythmic risk in ischaemic cardiomyopathy patients undergoing revasularisation

Holly Morgan et al.May 1, 2024
Abstract Background Ventricular arrhythmias are a leading cause of death in patients with ischaemic cardiomyopathy (ICM). Ischaemia is thought to increase arrhythmic risk and coronary revascularisation is frequently undertaken to reduce this risk, although the recent REVIVED-BCIS2 trial did not show a difference in the incidence of death, device therapies or sustained arrhythmias in patients assigned to have percutaneous coronary intervention (PCI) compared to optimal medical therapy alone(1). Purpose We assessed the mechanistic effects of revascularisation on arrhythmic risk in patients with ICM using non-invasive electrocardiographic imaging (ECGi). Methods Patients were eligible if they had a left ventricular ejection fraction (LVEF) &lt;40%, extensive coronary disease (BCIS Jeopardy Score≥6) and were scheduled to undergo revascularisation with coronary artery bypass grafting or PCI. ECGi assessment was performed using a 252-electrode vest with anatomical co-registration using a CT thorax. Patients underwent stress perfusion cardiac magnetic resonance (CMR) imaging; both ECGi and CMR were conducted at baseline and 3 months post revascularisation(Figure 1). The primary outcome measure was dispersion of repolarisation measured using global activation recovery interval (ARI) dispersion. Secondary outcome measures included repolarisation time (RT) dispersion, mean ARI and LV ARI dispersion. We also assessed the relationship between ARI dispersion, revascularisation and left ventricular scar burden. Data are presented as mean ± SD or median [IQR]. Results Thirty patients were recruited between 2020-2023; age 67±11 years, 90% male, BMI 28±5 and baseline LVEF was 29±8%. Twelve patients underwent CABG, 18 (60%) had PCI. The BCIS jeopardy score was 10 [9-11] at enrolment and decreased to 2 [0-4] after revascularisation. The LV scar burden at baseline was 15.1±6.5% and the change at 3 months was -0.5±5% (p=0.70). ARI dispersion and LV ARI dispersion were correlated with LV scar burden (r=0.62,p=0.01 and 0.71,p=0.002 respectively). No differences were seen in ARI dispersion (44.5 vs 44.1, p=0.86) or secondary outcome measures before and after revascularisation (RT dispersion: 45.5 vs 44.7, p=0.49; Mean ARI: 281.3 vs 282.6, p=0.74; ARI dispersion: 44.5 vs 44.1, p=0.86; LV ARI dispersion: 38.4 vs 36.7, p=0.39)(Figure 2). The LVEF change on CMR at 3 months was +6.9±10%; no relationship was seen between change in LVEF and ARI dispersion. Conclusion Arrhythmic risk assessed by non-invasive ECGi was not altered by coronary revascularisation. LV ARI dispersion was highly correlated with scar burden, which is not altered by revascularisation. Future work includes analysis of perfusion data. Our results support the findings of the REVIVED arrhythmia study that revascularisation does not reduce arrhythmic risk in patients with ICM(1). ECGi derived LV ARI dispersion correlates with scar and may represent a non-invasive arrhythmic risk assessment tool.Figure 1Figure 2
Load More