TG
Teresa Gómez‐Isla
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(63% Open Access)
Cited by:
9,791
h-index:
63
/
i10-index:
109
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Profound Loss of Layer II Entorhinal Cortex Neurons Occurs in Very Mild Alzheimer’s Disease

Teresa Gómez‐Isla et al.Jul 15, 1996
The entorhinal cortex (EC) plays a crucial role as a gateway connecting the neocortex and the hippocampal formation. Layer II of the EC gives rise to the perforant pathway, the major source of the excitatory input to the hippocampus, and layer IV receives a major hippocampal efferent projection. The EC is affected severely in Alzheimer disease (AD), likely contributing to memory impairment. We applied stereological principles of neuron counting to determine whether neuronal loss occurs in the EC in the very early stages of AD. We studied 20 individuals who at death had a Clinical Dementia Rating (CDR) score of 0 (cognitively normal), 0.5 (very mild), 1 (mild), or 3 (severe cognitive impairment). Lamina-specific neuronal counts were carried out on sections representing the entire EC. In the cognitively normal (CDR = 0) individuals, there were ∼650,000 neurons in layer II, 1 million neurons in layer IV, and 7 million neurons in the entire EC. The number of neurons remained constant between 60 and 90 years of age. The group with the mildest clinically detectable dementia (CDR = 0.5), all of whom had sufficient neurofibrillary tangles (NFTs) and senile plaques for the neuropathological diagnosis of AD, had 32% fewer EC neurons than controls. Decreases in individual lamina were even more dramatic, with the number of neurons in layer II decreasing by 60% and in layer IV by 40% compared with controls. In the severe dementia cases (CDR = 3), the number of neurons in layer II decreased by ∼90%, and the number of neurons in layer IV decreased by ∼70% compared with controls. Neuronal number in AD was inversely proportional to NFT formation and neuritic plaques, but was not related significantly to diffuse plaques or to total plaques. These results support the conclusion that a marked decrement of layer II neurons distinguishes even very mild AD from nondemented aging.
0

Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease

Teresa Gómez‐Isla et al.Jan 1, 1997
Abstract To assess the relationship between dementia, neuronal loss, and neuropathological findings in Alzheimer's disease (AD), we counted the number of neurons, senile plaques, and neurofibrillary tangles in a high‐order association cortex. We studied the superior temporal sulcus of 34 individuals with AD and 17 nondemented control subjects, using statistically unbiased, stereological counting techniques. The number of superior temporal sulcus neurons in nondemented control subjects was stable across the sixth to ninth decades. In AD, more than 50% of the neurons were lost. Both neuronal loss and neurofibrillary tangles increased in parallel with the duration and severity of illness, but the amount of neuronal loss exceeded by manyfold the amount of neurofibrillary tangles accumulated. In contrast to the correlation between neurofibrillary tangels and neuronal loss, the number of senile plaques and the percentage of the superior temporal sulcus that was covered by Aβ (amyloid burden) were not related to neuronal loss, number of neurofibrillary tangles, or duration of disease. Neither the amount nor the rate of neuronal loss in the superior temporal sulcus in AD correlated with apolipoprotein E genotype. These data suggest that neuronal loss in association areas such as the superior temporal sulcus contributes directly to cognitive impairment in AD.
0

Tau positron emission tomographic imaging in aging and early Alzheimer disease

Keith Johnson et al.Oct 27, 2015
Objective Detection of focal brain tau deposition during life could greatly facilitate accurate diagnosis of Alzheimer disease (AD), staging and monitoring of disease progression, and development of disease‐modifying therapies. Methods We acquired tau positron emission tomography (PET) using 18 F T807 (AV1451), and amyloid‐β PET using 11 C Pittsburgh compound B (PiB) in older clinically normal individuals, and symptomatic patients with mild cognitive impairment or mild AD dementia. Results We found abnormally high cortical 18 F T807 binding in patients with mild cognitive impairment and AD dementia compared to clinically normal controls. Consistent with the neuropathology literature, the presence of elevated neocortical 18 F T807 binding particularly in the inferior temporal gyrus was associated with clinical impairment. The association of cognitive impairment was stronger with inferior temporal 18 F T807 than with mean cortical 11 C PIB. Regional 18 F T807 was correlated with mean cortical 11 C PiB among both impaired and control subjects. Interpretation These findings suggest that 18 F T807 PET could have value as a biomarker that reflects both the progression of AD tauopathy and the emergence of clinical impairment. ANN NEUROL 2016;79:110–119
0

Endocytic Pathway Abnormalities Precede Amyloid β Deposition in Sporadic Alzheimer’s Disease and Down Syndrome

Anne Cataldo et al.Jul 1, 2000
Endocytosis is critical to the function and fate of molecules important to Alzheimer's disease (AD) etiology, including the beta protein precursor (betaPP), amyloid beta (Abeta) peptide, and apolipoprotein E (ApoE). Early endosomes, a major site of Abeta peptide generation, are markedly enlarged within neurons in the Alzheimer brain, suggesting altered endocytic pathway (EP) activity. Here, we show that neuronal EP activation is a specific and very early response in AD. To evaluate endocytic activation, we used markers of internalization (rab5, rabaptin 5) and recycling (rab4), and found that enlargement of rab5-positive early endosomes in the AD brain was associated with elevated levels of rab4 immunoreactive protein and translocation of rabaptin 5 to endosomes, implying that both endocytic uptake and recycling are activated. These abnormalities were evident in pyramidal neurons of the neocortex at preclinical stages of disease when Alzheimer-like neuropathology, such as Abeta deposition, was restricted to the entorhinal region. In Down syndrome, early endosomes were significantly enlarged in some pyramidal neurons as early as 28 weeks of gestation, decades before classical AD neuropathology develops. Markers of EP activity were only minimally influenced by normal aging and other neurodegenerative diseases studied. Inheritance of the epsilon4 allele of APOE, however, accentuated early endosome enlargement at preclinical stages of AD. By contrast, endosomes were normal in size at advanced stages of familial AD caused by mutations of presenilin 1 or 2, indicating that altered endocytosis is not a consequence of Abeta deposition. These results identify EP activation as the earliest known intraneuronal change to occur in sporadic AD, the most common form of AD. Given the important role of the EP in Abeta peptide generation and ApoE function, early endosomal abnormalities provide a mechanistic link between EP alterations, genetic susceptibility factors, and Abeta generation and suggest differences that may be involved in Abeta generation and beta amyloidogenesis in subtypes of AD.
0

Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease

Ronald Killiany et al.Apr 1, 2000
We used magnetic resonance imaging (MRI) measurements to determine whether persons in the prodromal phase of Alzheimer's disease (AD) could be accurately identified before they developed clinically diagnosed dementia. Normal subjects (n = 24) and those with mild memory difficulty (n = 79) received an MRI scan at baseline and were then followed annually for 3 years to determine which individuals subsequently met clinical criteria for AD. Patients with mild AD at baseline were also evaluated (n = 16). Nineteen of the 79 subjects with mild memory difficulty “converted” to a diagnosis of probable AD after 3 years of follow-up. Baseline MRI measures of the entorhinal cortex, the banks of the superior temporal sulcus, and the anterior cingulate were most useful in discriminating the status of the subjects on follow-up examination. The accuracy of discrimination was related to the clinical similarity between groups. One hundred percent (100%) of normal subjects and patients with mild AD could be discriminated from one another based on these MRI measures. When the normals were compared with the individuals with memory impairments who ultimately developed AD (the converters), the accuracy of discrimination was 93%, based on the MRI measures at baseline (sensitivity = 0.95; specificity = 0.90). The discrimination of the normal subjects and the individuals with mild memory problems who did not progress to the point where they met clinical criteria for probable AD over the 3 years of follow-up (the “questionables”) was 85% and the discrimination of the questionables and converters was 75%. The apolipoprotein E genotype did not improve the accuracy of discrimination. The specific regions selected for each of these discriminations provides information concerning the hierarchical fashion in which the pathology of AD may affect the brain during its prodromal phase. Ann Neurol 2000;47:430–439.
0
Citation636
0
Save
0

MRI measures of entorhinal cortex vs hippocampus in preclinical AD

Ronald Killiany et al.Apr 23, 2002
Background: MRI measures of the entorhinal cortex and the hippocampus have been used to predict which nondemented individuals with memory problems will progress to meet criteria for AD on follow-up, but their relative accuracy remains controversial. Objectives: To compare MRI measures of the entorhinal cortex and the hippocampus for predicting who will develop AD. Methods: MRI volumes of the entorhinal cortex and the hippocampus were obtained in 137 individuals comprising four groups: 1) individuals with normal cognition both at baseline and after 3 years of follow-up (n = 28), 2) subjects with memory difficulty but not dementia both at baseline and after 3 years of follow-up (n = 73), 3) subjects with memory difficulty at baseline who were diagnosed with probable AD within 3 years of follow-up (n = 21), and 4) patients with mild AD at baseline (n = 16). Results: Measures of both the entorhinal cortex and the hippocampus were different for each of the pairwise comparisons between the groups (p < 0.001) and were correlated with tests of memory (p < 0.01). However, the volume of the entorhinal cortex differentiated the subjects from those destined to develop dementia with considerable accuracy (84%), whereas the measure of the hippocampus did not. Conclusion: These findings are consistent with neuropathologic data showing substantial involvement of the entorhinal cortex in the preclinical phase of AD and suggest that, as the disease spreads, atrophic change develops within the hippocampus, which is measurable on MRI.
0
Citation559
0
Save
0

Validating novel tau positron emission tomography tracer [F‐18]‐AV‐1451 (T807) on postmortem brain tissue

Marta Marquié et al.Sep 7, 2015
To examine region- and substrate-specific autoradiographic and in vitro binding patterns of positron emission tomography tracer [F-18]-AV-1451 (previously known as T807), tailored to allow in vivo detection of paired helical filament-tau-containing lesions, and to determine whether there is off-target binding to other amyloid/non-amyloid proteins.We applied [F-18]-AV-1451 phosphor screen autoradiography, [F-18]-AV-1451 nuclear emulsion autoradiography, and [H-3]-AV-1451 in vitro binding assays to the study of postmortem samples from patients with a definite pathological diagnosis of Alzheimer disease, frontotemporal lobar degeneration-tau, frontotemporal lobar degeneration-transactive response DNA binding protein 43 (TDP-43), progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies, multiple system atrophy, cerebral amyloid angiopathy and elderly controls free of pathology.Our data suggest that [F-18]-AV-1451 strongly binds to tau lesions primarily made of paired helical filaments in Alzheimer brains (eg, intraneuronal and extraneuronal tangles and dystrophic neurites), but does not seem to bind to a significant extent to neuronal and glial inclusions mainly composed of straight tau filaments in non-Alzheimer tauopathy brains or to lesions containing β-amyloid, α-synuclein, or TDP-43. [F-18]-AV-1451 off-target binding to neuromelanin- and melanin-containing cells and, to a lesser extent, to brain hemorrhagic lesions was identified.Our data suggest that [F-18]-AV-1451 holds promise as a surrogate marker for the detection of brain tau pathology in the form of tangles and paired helical filament-tau-containing neurites in Alzheimer brains but also point to its relatively lower affinity for lesions primarily made of straight tau filaments in non-Alzheimer tauopathy cases and to the existence of some [F-18]-AV-1451 off-target binding. These findings provide important insights for interpreting in vivo patterns of [F-18]-AV-1451 retention.
0
Citation554
0
Save
0

Attenuation of Delayed Neuronal Death after Mild Focal Ischemia in Mice by Inhibition of the Caspase Family

Matthias Endres et al.Mar 1, 1998
Inhibitors of apoptosis and of excitotoxic cell death reduce brain damage after transient and permanent middle cerebral artery occlusion. We compared the neuroprotective effects of two caspase family inhibitors with the N-methyl-d-aspartate receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in a newly characterized cycloheximidesensitive murine model of transient middle cerebral artery occlusion (30 minutes) in which apoptotic cell death is prominent. Ischemic infarction, undetected by 2,3,5-triphenyltetrazolium chloride staining at 24-hour reperfusion, featured prominently in the striatum at 72 hours and 7 days on hematoxylin-eosin—stained sections. Markers of apoptosis, such as oligonucleosomal DNA damage (laddering) and terminal deoxynucleotidyl transferase—mediated dUTP-biotin nick-end labeling (TUNEL)–positive cells first appeared at 24 hours and increased significantly at 72 hours and 7 days after reperfusion. The TUNEL-labeled cells were mostly neurons and stained negative for glial (GFAP, glial fibrillary acid protein) and leukocyte specific markers (CD-45). The caspase inhibitors, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.FMK; 120 ng intracerebroventricularly) or N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (z-DEVD.FMK; 480 ng intracerebroventricularly) decreased infarct size and neurologic deficits when administered 6 hours after reperfusion. The extent of protection was greater than in models of more prolonged ischemia or after permanent occlusion, and the therapeutic window was extended from 0 to 1 hours after 2-hour middle cerebral artery occlusion to at least 6 hours after brief ischemia. Also, z-VAD.FMK and z-DEVD.FMK treatment decreased oligonucleosomal DNA damage (DNA laddering) as assessed by quantitative autoradiography after gel electrophoresis. By contrast, MK-801 protected brain tissue only when given before ischemia (3 mg/kg intraperitoneally), but not at 3 or 6 hours after reperfusion. Despite a decrease in infarct size after MK-801 pretreatment, the amount of DNA laddering did not decrease 72 hours after reperfusion, thereby suggesting a mechanism distinct from inhibition of apoptosis. Hence, 30 minutes of reversible ischemia augments apoptotic cell death, which can be attenuated by delayed z-VADPMK and z-DEVD.FMK administration with preservation of neurologic function. By contrast, the therapeutic window for MK-801 does not extend beyond the time of occlusion, probably because its primary mechanism of action does not block the development of apoptotic cell death.
0

Apolipoprotein E ε4 and cerebral hemorrhage associated with amyloid angiopathy

Steven Greenberg et al.Aug 1, 1995
Abstract Cerebral amyloid angiopathy (CAA) is characterized by cerebrovascular deposition of the amyloid β‐peptide, leading to intracerebral hemorrhage in severe cases. Other than rare familial cases, the only identified risks for CAA are advancing age and accompanying Alzheimer's disease. We tested whether the apolipoprotein E ϵ4 (apoE ϵ4) allele was associated with CAA and hemorrhage and whether this association was independent of Alzheimer's disease. The apoE ϵ4 genotype was determined without knowledge of the pathology for 93 postmortem cases systematically graded for severity of CAA and for 15 patients with CAA‐associated intracerebral hemorrhage. We found a significant and independent effect of the apoE genotype in both cohorts. Among the postmortem cases, the presence of apoE ϵ4 increased the odds ratio 13.1‐fold. In the cohort of CAA‐associated cerebral hemorrhages, the apoE ϵ4 allele frequency was 0.40, significantly greater than the control frequency of 0.14. The increase in CAA remained even after controlling for the presence of Alzheimer's disease, suggesting that apoE ϵ4 is a risk factor for CAA and CAA‐related hemorrhage, independent of its association with Alzheimer's disease.
0
Citation523
0
Save
0

Reactive Glia not only Associates with Plaques but also Parallels Tangles in Alzheimer's Disease

Alberto Serrano‐Pozo et al.Jul 25, 2011
Senile plaques are a prominent pathological feature of Alzheimer's disease (AD), but little is understood about the association of glial cells with plaques or about the dynamics of glial responses through the disease course. We investigated the progression of reactive glial cells and their relationship with AD pathological hallmarks to test whether glial cells are linked only to amyloid deposits or also to tangle deposition, thus integrating both lesions as a marker of disease severity. We conducted a quantitative stereology-based post-mortem study on the temporal neocortex of 15 control subjects without dementia and 91 patients with AD, including measures of amyloid load, neurofibrillary tangles, reactive astrocytes, and activated microglia. We also addressed the progression of glial responses in the vicinity (≤50 μm) of dense-core plaques and tangles. Although the amyloid load reached a plateau early after symptom onset, astrocytosis and microgliosis increased linearly throughout the disease course. Moreover, glial responses correlated positively with tangle burden, whereas astrocytosis correlated negatively with cortical thickness. However, neither correlated with amyloid load. Glial responses increased linearly around existing plaques and in the vicinity of tangles. These results indicate that the progression of astrocytosis and microgliosis diverges from that of amyloid deposition, arguing against a straightforward relationship between glial cells and plaques. They also suggest that reactive glia might contribute to the ongoing neurodegeneration. Senile plaques are a prominent pathological feature of Alzheimer's disease (AD), but little is understood about the association of glial cells with plaques or about the dynamics of glial responses through the disease course. We investigated the progression of reactive glial cells and their relationship with AD pathological hallmarks to test whether glial cells are linked only to amyloid deposits or also to tangle deposition, thus integrating both lesions as a marker of disease severity. We conducted a quantitative stereology-based post-mortem study on the temporal neocortex of 15 control subjects without dementia and 91 patients with AD, including measures of amyloid load, neurofibrillary tangles, reactive astrocytes, and activated microglia. We also addressed the progression of glial responses in the vicinity (≤50 μm) of dense-core plaques and tangles. Although the amyloid load reached a plateau early after symptom onset, astrocytosis and microgliosis increased linearly throughout the disease course. Moreover, glial responses correlated positively with tangle burden, whereas astrocytosis correlated negatively with cortical thickness. However, neither correlated with amyloid load. Glial responses increased linearly around existing plaques and in the vicinity of tangles. These results indicate that the progression of astrocytosis and microgliosis diverges from that of amyloid deposition, arguing against a straightforward relationship between glial cells and plaques. They also suggest that reactive glia might contribute to the ongoing neurodegeneration. Activated glia is a prominent feature of Alzheimer's disease (AD) neuropathological features, with both reactive astrocytes and activated microglia clustering around and within dense-core amyloid plaques (ie, thioflavin-S–positive plaques).1Itagaki S. McGeer P.L. Akiyama H. Zhu S. Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease.J Neuroimmunol. 1989; 24: 173-182Abstract Full Text PDF PubMed Scopus (765) Google Scholar A better understanding of how these reactive glial cells accrue during the disease course and how they relate to the classic AD pathological hallmarks [ie, amyloid plaques and neurofibrillary tangles (NFTs)] is crucial for the following reasons: i) a body of preclinical evidence implicates these glial cells in AD pathophysiological features; ii) new positron emission tomographic (PET) radiotracers for amyloid plaques, NFTs, and, particularly, activated glial cells are being developed as diagnostic and progression biomarkers; and iii) clinical trials with anti-inflammatory therapies, ranging from nonsteroidal anti-inflammatory drugs (NSAIDs) to i.v. Ig, are under development. In a previous quantitative neuropathological study,2Ingelsson M. Fukumoto H. Newell K.L. Growdon J.H. Hedley-Whyte E.T. Frosch M.P. Albert M.S. Hyman B.T. Irizarry M.C. Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain.Neurology. 2004; 62: 925-931Crossref PubMed Scopus (523) Google Scholar we observed a positive linear correlation between astrocytosis in the temporal neocortex, as measured with a glial fibrillary acidic protein (GFAP) enzyme-linked immunosorbent assay, and the duration of the disease from the onset of cognitive symptoms, despite the plaque burden remaining stable throughout the course of the disease. We hypothesized that a certain threshold of amyloid burden might be needed to trigger glial responses within a particular region of the cortex and that, once triggered, glial responses would reflect a pathogenic cascade increasingly independent of plaques. In the present study, we sought to extend that observation and test the hypothesis that, although initially linked to plaques, glial responses increasingly reflect the widespread ongoing neurodegenerative process. We quantified the number of reactive astrocytes and activated microglial cells in the temporal neocortex of a large cohort of controls without dementia and subjects with AD at different stages of the disease and investigated both their apparent progression throughout the disease course and their relation to the local burden of amyloid plaques and NFTs. Although glial association with amyloid plaques has long been assumed, we found a dissociation between these pathological features, with a linear increase of reactive glia despite a relatively stable plaque burden. The magnitude of these glial changes correlated with the burden of NFTs. A closer analysis in a subset of subjects with AD revealed that reactive glial cells increased both in the proximity of dense-core plaques and near NFTs, thus supporting a previously not described association between glial responses and neurofibrillary degeneration. Formalin-fixed, paraffin-embedded tissue specimens from the temporal association isocortex (Brodmann area 38) of 91 patients with AD and 15 controls without dementia were obtained from the Massachusetts Alzheimer Disease Research Center Brain Bank. They were consecutively selected by tissue availability. All of the study subjects or their next of kin gave written informed consent for the brain donation, and the Massachusetts General Hospital Institutional Review Board approved the study protocol. The demographic characteristics of both groups are depicted in Table 1. All of the patients with AD fulfilled the National Institute of Neurological and Communicative Disorders and Stroke–Alzheimer's Disease and Related Disorders Associations criteria for probable AD3McKhann G. Drachman D. Folstein M. Katzman R. Price D. Stadlan E.M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer's Disease.Neurology. 1984; 34: 939-944Crossref PubMed Google Scholar and the National Institute on Aging–Reagan criteria for high likelihood of AD.4The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease Consensus recommendations for the postmortem diagnosis of Alzheimer's disease.Neurobiol Aging. 1997; 18: S1-S2PubMed Google Scholar Cases with cerebrovascular disease considered severe enough to contribute to the dementia syndrome were excluded because cerebrovascular disease is a major cause of focal gliosis. Cases with Lewy body pathological features were also excluded. Sections (8-μm thick) were deparaffinized for immunohistochemistry by standard methods. Primary and secondary antibodies, pretreatments for antigen retrieval, and visualization strategies are summarized in Table 2. For stereological quantitative studies, immunostained sections were developed with 3,3′-diaminobenzidine (Vector Laboratories, Burlingame, CA), lightly counterstained with Mayer's hematoxylin, dehydrated with increasing concentrations of ethanol, cleared with xylene, and cover-slipped with Permount mounting media (Fisher Scientific, Fair Lawn, NJ). Nearly adjacent temporal sections from a subset of 40 subjects with AD and six controls without dementia were immunostained using fluorescently labeled secondary antibodies, counterstained with 0.05% thioflavin-S (Sigma, St Louis, MO) in 50% ethanol for 8 minutes, and cover-slipped with Vectashield mounting media with 4',6-diamidino-2-phenylindole (DAPI) (Vector Laboratories).Table 1Demographic Characteristics of the Cohorts without Dementia and with AD and Their Corresponding Subsets Included in the Quantitative Neuropathological StudyCharacteristicsControl cohort (n = 15)AD cohort (n = 91)P valueControl subset (n = 6)AD subset (n = 40)P valueAge at death (years)⁎Data are given as mean ± SD. P values were obtained using the two-tailed Mann-Whitney U-test.79.9 ± 13.379.0 ± 7.8NS83.7 ± 14.077.6 ± 8.60.0429Female sex†Data are given as number (percentage) of each group. P values were obtained using the two-tailed χ2 test with Fisher's exact test.10 (66.7)58 (63.7)NS4 (66.7)26 (65.0)NSDisease duration (years)‡Data are given as median (interquartile range).NA9.8 (6.8–13.7)NANA9.9 (5.4–15.5)NAAPOE genotype†Data are given as number (percentage) of each group. P values were obtained using the two-tailed χ2 test with Fisher's exact test. APOEε4 carriers4 (26.7)59 (64.8)0.00902 (33.3)21 (52.5)NS APOEε4 alleles§To obtain percentages, the denominators for this row were doubled.4 (13.3)70 (38.5)0.00702 (16.7)25 (31.2)NSPost-mortem interval (hours)⁎Data are given as mean ± SD. P values were obtained using the two-tailed Mann-Whitney U-test.22.3 ± 12.813.9 ± 9.10.008521.0 ± 11.114.1 ± 6.2NSInformation about cause of death was available in only 44 of the 91 subjects with AD because nursing homes are the main source of our brain donation program. Patients with protracted death (mostly aspirative pneumonia and cancer, n = 31) did not differ from patients with sudden death (mostly pulmonary emboli and myocardial infarction, n = 13) regarding their age at death (P = 0.2261), disease duration (P = 0.9898), or amount of astrocytosis (P = 0.1870) and microgliosis (P = 0.9180). Statistically significant P values are boldfaced.NA, not applicable; NS, not significant. Data are given as mean ± SD. P values were obtained using the two-tailed Mann-Whitney U-test.† Data are given as number (percentage) of each group. P values were obtained using the two-tailed χ2 test with Fisher's exact test.‡ Data are given as median (interquartile range).§ To obtain percentages, the denominators for this row were doubled. Open table in a new tab Table 2Antibodies, Antigen Retrieval Protocols, and Visualization Strategies Used in the IHC StudiesPrimary antibodyHostDilutionAntigen retrieval⁎Citrate buffer + MW indicates 0.01 mol/L citrate buffer (pH 6.0) with 0.05% Tween 20 in a microwave oven at 95°C for 20 minutes.Secondary antibody†All secondary antibodies were obtained from Jackson ImmunoResearch Labs (West Grove, PA).Visualization strategy10D5 (Elan Pharmaceuticals, Inc.)Ms1:50Citrate buffer + MW and 90% formic acid for 5 minutesHRP anti-Ms (1:200)DAB (Vector Laboratories)PHF1 (gift from Dr. Peter Davies)Ms1:200Citrate buffer + MWBiotin anti-Ms (1:200)ABC kit + DAB (Vector Laboratories for both)GFAP (catalogue no. G9269; Sigma)Rb1:1000Citrate buffer + MWi) Biotin anti-Rb (1:200) and ii) Cy3 anti-Rb (1:200)i) ABC kit + DAB (Vector Laboratories for both) and ii) noneCD68 (catalogue no. M0814; Dako, Glostrup, Denmark)Ms1:100Citrate buffer + MWBiotin anti-Ms (1:200)ABC kit + DAB (Vector Laboratories for both)Iba1 (catalogue no. 019-19741; Wako)Rb1:250Citrate buffer + MWCy3 anti-Rb (1:200)NoneNAB61 (gift from Dr. Virginia Lee)Ms1:500NoneBiotin anti-Ms (1:200)ABC kit (Vector Laboratories) + streptavidin-Cy3 (1:200) (Invitrogen)ABC, avidin-biotin complex; DAB, 3,3′-diaminobenzidine; HRP, horseradish peroxidase; Ms, mouse; Rb, rabbit. Citrate buffer + MW indicates 0.01 mol/L citrate buffer (pH 6.0) with 0.05% Tween 20 in a microwave oven at 95°C for 20 minutes.† All secondary antibodies were obtained from Jackson ImmunoResearch Labs (West Grove, PA). Open table in a new tab Information about cause of death was available in only 44 of the 91 subjects with AD because nursing homes are the main source of our brain donation program. Patients with protracted death (mostly aspirative pneumonia and cancer, n = 31) did not differ from patients with sudden death (mostly pulmonary emboli and myocardial infarction, n = 13) regarding their age at death (P = 0.2261), disease duration (P = 0.9898), or amount of astrocytosis (P = 0.1870) and microgliosis (P = 0.9180). Statistically significant P values are boldfaced. NA, not applicable; NS, not significant. ABC, avidin-biotin complex; DAB, 3,3′-diaminobenzidine; HRP, horseradish peroxidase; Ms, mouse; Rb, rabbit. We took advantage of stereology tools to perform unbiased quantitative neuropathological studies in these brain specimens. All analyses were conducted blinded to disease status. Cortical thickness was measured in sections stained with Luxol fast blue H&E, as previously described.5Freeman S.H. Kandel R. Cruz L. Rozkalne A. Newell K. Frosch M.P. Hedley-Whyte E.T. Locascio J.J. Lipsitz L.A. Hyman B.T. Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease.J Neuropathol Exp Neurol. 2008; 67: 1205-1212Crossref PubMed Scopus (144) Google Scholar Briefly, the image analysis software CAST (Olympus, Copenhagen, Denmark), mounted on an upright BX51 Olympus microscope (Olympus) and coupled with a motorized stage and a charge-coupled device camera, was used to randomly sample the cortex of the entire section and measure the thickness of the full cortex. The measurements of full cortical thickness in 20 random sites were averaged. Amyloid load and stereology-based studies on 3,3′-diaminobenzidine sections were conducted in an upright Leica DMRB microscope (Leica, Wetzlar, Germany) equipped with a motorized stage and a charge-coupled device camera (model DC330; DAGE-MTI, Inc., Michigan City, IN) and coupled with the software BIOQUANT NOVA PRIME, version 6.90.10 (MBSR, Nashville, TN). Amyloid load was measured as the percentage of total surface stained by the N-terminal–specific anti-amyloid β (Aβ) antibody 10D5 (Elan Pharmaceuticals, Inc., Dublin, Ireland) in a full-thickness strip of cortex (approximately 1-cm long) using the optical threshold application of the software. The total number of amyloid plaques in a 1-cm-long strip of cortex was calculated by dividing the total number of particles higher than the threshold by the area analyzed (both parameters provided by the software) and then correcting the resultant density by the cortical thickness. Paired helical filament 1–positive NFTs, GFAP-positive astrocytes, and CD68-positive microglial cells were counted with the optic dissector technique,6Hyman B.T. Gómez-Isla T. Irizarry M.C. Stereology: a practical primer for neuropathology.J Neuropathol Exp Neurol. 1998; 57: 305-310Crossref PubMed Scopus (77) Google Scholar using either 100 cells or 1000 optical dissectors as the end point. The objective/dissector size used in each case was 40/150 × 150 μm for paired helical filament 1–positive neurons, 40/50 × 50 μm for GFAP-positive astrocytes, and 100/20 × 20 μm for CD68-positive microglial cells. Intraneuronal and extracellular ghost tangles were not distinguished. Because different pathological features tend to accumulate in specific layers of the cortex (ie, reactive astrocytes in layer I and NFTs in layers II and V), care was taken to cover all of the six cortical layers in the systematic random sampling to avoid selection bias. As with the amyloid plaques, the densities of NFTs, astrocytes, and microglial cells were calculated by dividing the number of cells counted in single sections by the total area of the dissectors analyzed. To avoid any overestimation of densities because of disease-related cortical atrophy, these densities were then corrected by the cortical thickness to estimate the total number of cells within a full-thickness 1-cm-long strip of cortex. We performed additional quantitative studies in a subset of 40 AD cases selected from the original AD cohort on the basis of a wide range of disease duration and in a subset of six controls without dementia (ie, those with enough dense-core plaques). These subsets were representative of their corresponding cohorts in demographic characteristics, and the AD subset was also comparable to the entire AD cohort in neuropathological quantitative measures (Table 1; see also Supplemental Table S1 and Figure S1 at http://ajp.amjpathol.org). To study the progression of compact and oligomeric species of Aβ, we quantified the number of dense-core plaques and oligomeric Aβ-positive plaques in sections doubly stained with thioflavin-S and NAB61 antibody. The NAB61 antibody was provided by Dr. Virginia Lee (University of Pennsylvania, Philadelphia) and has been previously characterized. It is a conformation-specific anti-Aβ mouse monoclonal antibody that binds to Aβ dimers, small oligomers, and higher-order Aβ assemblies and stains a subset of mature dense-core plaques.7Lee E.B. Leng L.Z. Zhang B. Kwong L. Trojanowski J.Q. Abel T. Lee V.M. Targeting amyloid-β peptide (Aβ) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Aβ precursor protein (APP) transgenic mice.J Biol Chem. 2006; 281: 4292-4299Crossref PubMed Scopus (257) Google Scholar Virtually no thioflavin-S–negative plaque was immunoreactive for NAB61. In this study, 100 dense-core plaques per case were randomly sampled, as previously described, and their positivity for NAB61 was qualitatively assessed. The densities of dense-core plaques and NAB61-positive plaques obtained were corrected by the cortical thickness to calculate total numbers of plaques within a 1-cm-long full-thickness strip of cortex. Single sections from the subset of 40 AD cases were also doubly stained with thioflavin-S and GFAP or Iba1 to investigate the spatial relationship between glial responses and dense-core plaques and NFTs along the course of the disease. Optimal fluorescent immunolabeling of activated microglia was achieved with antibody Iba1 (Wako, Osaka, Japan), another marker widely used for activated microglia. Sections were placed on the motorized stage of an upright BX51 Olympus microscope equipped with CAST stereology software. One hundred GFAP-positive astrocytes or Iba1-positive microglial cells per section were randomly selected under the ×20 or the ×40 objective, respectively, and their distance with respect to the closest dense-core plaque or NFT was measured with the appropriate tool of the software. For consistency, only cells with a visible nucleus in the DAPI staining were considered. Astrocytes and microglial cells were classified into three categories: i) close to plaques, if located ≤50 μm from the edge of a plaque (regardless of the presence of an NFT within this boundary); ii) close to NFTs, if located ≤50 μm from an NFT but far (>50 μm) from dense-core plaques; and iii) far from plaques and NFTs, if the closest plaque and NFT to the glial cell were located >50 μm. Densities of glial cells in each of these categories were obtained as previously described. The APOE genotype was determined in all of the study subjects by restriction fragment length polymorphism analysis, as previously described.8Ingelsson M. Shin Y. Irizarry M.C. Hyman B.T. Genotyping of apolipoprotein E: comparative evaluation of different protocols.Curr Protoc Hum Gen. 2003; 38: 1-13Google Scholar Statistics were performed, and graphs were obtained with GraphPad Prism software for Mac, version 5.0. The normality of data sets was tested with the D'Agostino-Pearson omnibus test. For correlations of cortical thickness, amyloid load, and total number of astrocytes/microglia with disease duration, two different fit models were examined using the least-squares fitting method: linear regression versus one-phase exponential association (or decay in the case of cortical thickness). The first model assumes a linear increase of the pathological features over time, whereas the second model consists of an initial increase followed by a plateau. Next, these two fit models were compared using the Akaike's Informative Criteria method with no constraints, and the model most likely to have generated the data was selected based on the magnitude of the difference between both fit models, the probabilities of the models being correct (as calculated by the statistical software), and their goodness of fit (R2). When the straight-line model was preferred, a P value indicating whether the slope of the straight line is significantly different from 0 and both the correlation coefficient (r) and the P value of Spearman's rank correlation test were also reported. Because none of the data sets was normally distributed, cross correlations between these pathological quantitative measures were investigated with the Spearman's rank correlation test. The significance level was set at a two-sided P < 0.05 in all statistical analyses. We have previously used disease duration (defined from the onset of cognitive symptoms) as a proxy of disease severity to avoid the floor effects of neuropsychological tests in patients with advanced dementia, who are typically not testable. More important, the three major pathological correlates of cognitive decline (ie, NFT burden, neuron loss, and synaptic loss) also correlated with disease duration in our previous quantitative post-mortem studies2Ingelsson M. Fukumoto H. Newell K.L. Growdon J.H. Hedley-Whyte E.T. Frosch M.P. Albert M.S. Hyman B.T. Irizarry M.C. Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain.Neurology. 2004; 62: 925-931Crossref PubMed Scopus (523) Google Scholar, 9Arriagada P.V. Growdon J.H. Hedley-Whyte E.T. Hyman B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease.Neurology. 1992; 42: 631-639Crossref PubMed Google Scholar, 10Gómez-Isla T. Hollister R. West H. Mui S. Growdon J.H. Petersen R.C. Parisi J.E. Hyman B.T. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease.Ann Neurol. 1997; 41: 17-24Crossref PubMed Scopus (1119) Google Scholar on the temporal neocortex. Herein, we measured the cortical thickness of the temporal neocortex specimens from the AD cohort as an index of synaptic, dendritic, and neuronal integrity. We found a significant negative correlation between cortical thickness and symptomatic disease duration, further validating the use of disease duration as a surrogate of disease severity (r = −0.3977, P < 0.0001) (Figure 1A and Table 3).Table 3Summary of the Results from the AD and Control CohortsVariableAD cohort (n = 91)AD + CTRL with plaques (n = 101)AD + all CTRL (n = 106)LinearOne-phase exponentialLinearOne-phase exponentialLinearOne-phase exponentialCortical thickness (μm) ΔAICc1.804NANA Probability (%)71.1328.87100Not converged100Not converged Goodness (R2)0.17970.18310.2130NA0.2296NA Slope ≠ 0? (P)<0.0001NA<0.0001NA<0.0001NA Spearman's r−0.3977NA−0.4523NA−0.4649NA Spearman′s P<0.0001NA<0.0001NA<0.0001NAAmyloid burden (%) ΔAICc4.34710.8318.23 Probability (%)10.2289.780.4499.560.0199.99 Goodness (R2)0.06570.10930.23170.30990.31170.4205 Slope ≠ 0? (P)0.0142NA<0.0001NA<0.0001NATotal amyloid plaques ΔAICc1.76111.9621.72 Probability (%)29.3170.690.2599.75<0.01>99.99 Goodness (R2)0.03910.05750.21010.29830.29520.4258 Slope ≠ 0? (P)0.0602NA<0.0001NA<0.0001NATotal astrocytes ΔAICc0.75453.0053.953 Probability (%)59.3240.6881.8018.2087.8312.17 Goodness (R2)0.19510.18840.24330.22040.27050.2428 Slope ≠ 0? (P)<0.0001NA<0.0001NA<0.0001NA Spearman's r0.4070NA0.5037NA0.5471NA Spearman's P<0.0001NA<0.0001NA<0.0001NATotal microglia ΔAICc5.17133.1842.25 Probability (%)92.997.01>99.99<0.01>99.99<0.01 Goodness (R2)0.09600.04310.1728−0.14890.2109−0.1755 Slope ≠ 0? (P)0.0028NA<0.0001NA<0.0001NA Spearman's r0.3545NA0.4326NA0.4728NA Spearman's P0.0006NA<0.0001NA<0.0001NAThe probability of being correct and the goodness of fit (R2) of both the linear regression and the one-phase exponential association models (or decay, in the case of cortical thickness) are shown for the main neuropathological measures in the AD cohort alone, the AD cohort plus the controls without dementia and with plaques, and the AD cohort plus the entire control cohort. The best-fit model is boldfaced. In the linear regression model, P indicates whether the slope is significantly different from 0. When the linear regression model was the preferred-fit model, the correlation coefficient and the P value from the Spearman's rank correlation test are also shown. For the amyloid burden and the total number of amyloid plaques, the nonlinear model remains the best fit, despite the linear fit yielding a straight line with a slope significantly different from 0 (because of the anchoring effect of controls close to 0). Also, the R2 of the one-phase exponential association model is negative for some neuropathological measures, indicating that the best-fit curve fits the data even worse than a horizontal line. Statistics in Materials and Methods provides further details.ΔAICc, magnitude of the difference between both fit models; CTRL, control without dementia; NA, not applicable. Open table in a new tab The probability of being correct and the goodness of fit (R2) of both the linear regression and the one-phase exponential association models (or decay, in the case of cortical thickness) are shown for the main neuropathological measures in the AD cohort alone, the AD cohort plus the controls without dementia and with plaques, and the AD cohort plus the entire control cohort. The best-fit model is boldfaced. In the linear regression model, P indicates whether the slope is significantly different from 0. When the linear regression model was the preferred-fit model, the correlation coefficient and the P value from the Spearman's rank correlation test are also shown. For the amyloid burden and the total number of amyloid plaques, the nonlinear model remains the best fit, despite the linear fit yielding a straight line with a slope significantly different from 0 (because of the anchoring effect of controls close to 0). Also, the R2 of the one-phase exponential association model is negative for some neuropathological measures, indicating that the best-fit curve fits the data even worse than a horizontal line. Statistics in Materials and Methods provides further details. ΔAICc, magnitude of the difference between both fit models; CTRL, control without dementia; NA, not applicable. Next, we traced the progression of amyloid deposition and patterns of glial immunostaining throughout the clinical disease course. Amyloid burden, determined as the percentage of cortical surface immunoreactive for the anti-Aβ antibody 10D5, reached a plateau early after symptomatic onset and remained relatively stable thereafter (Figure 1B and Table 3). An analysis of total number of plaques yielded similar results (Figure 1C and Table 3). Like 10D5-immunoreactive plaques in the original AD cohort, the number of dense-core plaques determined in a subset of 40 AD cases remained relatively stable throughout the disease clinical course after an initial increase (Figure 2, A and B, and Table 4). Last, the amount of NAB61-positive oligomeric Aβ-enriched plaques also remained constant throughout the disease clinical course (Figure 2, C and D, and Table 4).Table 4Summary of the Results from the AD and Control Subsets Concerning Fibrillar and Oligomeric Aβ BurdenVariableAD subset (n = 40)AD + CTRL with dense-core plaques (n = 46)LinearOne-phase exponentialLinearOne-phase exponentialTotal dense-core plaques ΔAICc0.25251.833 Probability (%)46.8553.1528.5771.43 Goodness (R2)0.02480.03100.12970.1637 Slope ≠ 0? (P)0.3313NA0.0140NATotal NAB61 + plaques ΔAICcNANA Probability (%)100Not converged100Not converged Goodness (R2)0.00020.0361 Slope ≠ 0? (P)0.93130.2060 Spearman's r−0.0037NA0.2267NA Spearman's P0.9816NA0.1298NAThe ΔAICc represents the magnitude of the difference between the two fit models compared. The best-fit model is boldfaced. In the linear model, P indicates whether the slope is significantly different from 0. When the linear regression model was the preferred-fit model, the correlation coefficient and the P value from the Spearman's rank correlation test are also shown. The nonlinear model is the best fit for total dense-core plaques in the AD + CTRL analysis, despite the linear fit yielding a straight line with a slope significantly different from 0 (likely because of the anchoring effect caused by the controls). Statistics in Materials and Methods provides further details.ΔAICc, magnitude of the difference between both fit models; CTRL, control without dementia; NA, not applicable. Open table in a new tab The ΔAICc represents the magnitude of the difference between the two fit models compared. The best-fit model is boldfaced. In the linear model, P indicates
0
Citation407
0
Save
Load More