CS
Cristobál Sifón
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(100% Open Access)
Cited by:
1,599
h-index:
48
/
i10-index:
90
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data

Chiaki Hikage et al.Jan 29, 2019
We measure cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137deg$^2$ of the sky. Thanks to the high effective galaxy number density of $\sim$17 arcmin$^{-2}$ even after conservative cuts such as magnitude cut of $i<24.5$ and photometric redshift cut of $0.3\leq z \leq 1.5$, we obtain a high significance measurement of the cosmic shear power spectra in 4 tomographic redshift bins, achieving a total signal-to-noise ratio of 16 in the multipole range $300 \leq \ell \leq 1900$. We carefully account for various uncertainties in our analysis including the intrinsic alignment of galaxies, scatters and biases in photometric redshifts, residual uncertainties in the shear measurement, and modeling of the matter power spectrum. The accuracy of our power spectrum measurement method as well as our analytic model of the covariance matrix are tested against realistic mock shear catalogs. For a flat $\Lambda$ cold dark matter ($\Lambda$CDM) model, we find $S_8\equiv \sigma_8(\Omega_{\rm m}/0.3)^\alpha=0.800^{+0.029}_{-0.028}$ for $\alpha=0.45$ ($S_8=0.780^{+0.030}_{-0.033}$ for $\alpha=0.5$) from our HSC tomographic cosmic shear analysis alone. In comparison with Planck cosmic microwave background constraints, our results prefer slightly lower values of $S_8$, although metrics such as the Bayesian evidence ratio test do not show significant evidence for discordance between these results. We study the effect of possible additional systematic errors that are unaccounted in our fiducial cosmic shear analysis, and find that they can shift the best-fit values of $S_8$ by up to $\sim 0.6\sigma$ in both directions. The full HSC survey data will contain several times more area, and will lead to significantly improved cosmological constraints.
0

Gravitational lensing analysis of the Kilo-Degree Survey

Konrad Kuijken et al.Oct 20, 2015
The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological studies from weak lensing and photometric redshifts. It uses the ESO VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in four filters similar to the SDSS ugri bands. The best-seeing time is reserved for deep r-band observations that reach a median 5-sigma limiting AB magnitude of 24.9 with a median seeing that is better than 0.7arcsec. Initial KiDS observations have concentrated on the GAMA regions near the celestial equator, where extensive, highly complete redshift catalogues are available. A total of 109 survey tiles, one square degree each, form the basis of the first set of lensing analyses, which focus on measurements of halo properties of GAMA galaxies. 9 galaxies per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69 per square arcminute. Accounting for the shape measurement weight, the median redshift of the sources is 0.53. KiDS data processing follows two parallel tracks, one optimized for galaxy shape measurement (for weak lensing), and one for accurate matched-aperture photometry in four bands (for photometric redshifts). This technical paper describes how the lensing and photometric redshift catalogues have been produced (including an extensive description of the Gaussian Aperture and Photometry pipeline), summarizes the data quality, and presents extensive tests for systematic errors that might affect the lensing analyses. We also provide first demonstrations of the suitability of the data for cosmological measurements, and explain how the shear catalogues were blinded to prevent confirmation bias in the scientific analyses. The KiDS shear and photometric redshift catalogues, presented in this paper, are released to the community through http://kids.strw.leidenuniv.nl .
0

The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data

Matthew Hasselfield et al.Jul 8, 2013
[Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed θ_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding σ_8 = 0.829 \pm 0.024 and Ω_m = 0.292 \pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain Σm_ν< 0.29 eV (95% C. L.).
0

The first and second data releases of the Kilo-Degree Survey

J. Jong et al.Aug 25, 2015
The Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will image 1500 square degrees in four filters (ugri), and together with its near-infrared counterpart VIKING will produce deep photometry in nine bands. Designed for weak lensing shape and photometric redshift measurements, the core science driver of the survey is mapping the large-scale matter distribution in the Universe back to a redshift of ~0.5. Secondary science cases are manifold, covering topics such as galaxy evolution, Milky Way structure, and the detection of high-redshift clusters and quasars. KiDS is an ESO Public Survey and dedicated to serving the astronomical community with high-quality data products derived from the survey data, as well as with calibration data. Public data releases will be made on a yearly basis, the first two of which are presented here. For a total of 148 survey tiles (~160 sq.deg.) astrometrically and photometrically calibrated, coadded ugri images have been released, accompanied by weight maps, masks, source lists, and a multi-band source catalog. A dedicated pipeline and data management system based on the Astro-WISE software system, combined with newly developed masking and source classification software, is used for the data production of the data products described here. The achieved data quality and early science projects based on the data products in the first two data releases are reviewed in order to validate the survey data. Early scientific results include the detection of nine high-z QSOs, fifteen candidate strong gravitational lenses, high-quality photometric redshifts and galaxy structural parameters for hundreds of thousands of galaxies. (Abridged)
5

A Deep and Wide Twilight Survey for Asteroids Interior to Earth and Venus

Scott Sheppard et al.Sep 29, 2022
Abstract We are conducting a survey using twilight time on the Dark Energy Camera with the Blanco 4 m telescope in Chile to look for objects interior to Earth’s and Venus’ orbits. To date we have discovered two rare Atira/Apohele asteroids, 2021 LJ4 and 2021 PH27, which have orbits completely interior to Earth’s orbit. We also discovered one new Apollo-type Near Earth Object (NEO) that crosses Earth’s orbit, 2022 AP7. Two of the discoveries have diameters ≳1 km. 2022 AP7 is likely the largest Potentially Hazardous Asteroid (PHA) discovered in about eight years. To date we have covered 624 square degrees of sky near to and interior to the orbit of Venus. The average images go to 21.3 mag in the r band, with the best images near 22nd mag. Our new discovery 2021 PH27 has the smallest semimajor axis known for an asteroid, 0.4617 au, and the largest general relativistic effects (53 arcsec/century) known for any body in the solar system. The survey has detected ∼15% of all known Atira NEOs. We put strong constraints on any stable population of Venus co-orbital resonance objects existing, as well as the Atira and Vatira asteroid classes. These interior asteroid populations are important to complete the census of asteroids near Earth, including some of the most likely Earth impactors that cannot easily be discovered in other surveys. Comparing the actual population of asteroids found interior to Earth and Venus with those predicted to exist by extrapolating from the known population exterior to Earth is important to better understand the origin, composition, and structure of the NEO population.
5
Citation8
1
Save
0

The fifth data release of the Kilo Degree Survey: Multi-epoch optical/NIR imaging covering wide and legacy-calibration fields

Angus Wright et al.Jun 1, 2024
We present the final data release of the Kilo-Degree Survey (KiDS-DR5), a public European Southern Observatory (ESO) wide-field imaging survey optimised for weak gravitational lensing studies. We combined matched-depth multi-wavelength observations from the VLT Survey Telescope and the VISTA Kilo-degree INfrared Galaxy (VIKING) survey to create a nine-band optical-to-near-infrared survey spanning 1347 deg 2 . The median r -band 5 σ limiting magnitude is 24.8 with median seeing 0.7″. The main survey footprint includes 4 deg 2 of overlap with existing deep spectroscopic surveys. We complemented these data in DR5 with a targeted campaign to secure an additional 23 deg 2 of KiDS- and VIKING-like imaging over a range of additional deep spectroscopic survey fields. From these fields, we extracted a catalogue of 126 085 sources with both spectroscopic and photometric redshift information, which enables the robust calibration of photometric redshifts across the full survey footprint. In comparison to previous releases, DR5 represents a 34% areal extension and includes an i -band re-observation of the full footprint, thereby increasing the effective i -band depth by 0.4 magnitudes and enabling multi-epoch science. Our processed nine-band imaging, single- and multi-band catalogues with masks, and homogenised photometry and photometric redshifts can be accessed through the ESO Archive Science Portal.
0

Dark Matter Halos of Luminous Active Galactic Nuclei from Galaxy–Galaxy Lensing with the HSC Subaru Strategic Program

Wentao Luo et al.Dec 1, 2024
Abstract We assess the dark matter halo masses of luminous active galactic nuclei (AGNs) over the redshift range 0.2–1.2 using galaxy–galaxy lensing based on imaging data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). We measure the weak lensing signal of a sample of 48,907 AGNs constructed using HSC and Wide-field Infrared Survey Explorer photometry. As expected, we find that the lensing mass profile of total AGN sample is consistent with that of massive galaxies ( log ( M * /  h − 2  M ⊙ ) ∼ 10.61). Surprisingly, the lensing signal remains unchanged when the AGN sample is split into four host galaxy stellar mass bins. Specifically, we find that the excess surface density of AGNs residing in galaxies with high stellar masses significantly differs from that of the control sample. We further fit a halo occupation distribution model to the data to infer the posterior distribution of parameters including the average halo mass. We find that the characteristic halo mass of the full AGN population lies near the knee ( log ( M h /  h − 1  M ⊙ ) = 12.0 ) of the stellar-to-halo mass relation (SHMR). Illustrative of the results given above, the halo masses of AGNs residing in host galaxies with high stellar masses (i.e., above the knee of the SHMR) fall below the calibrated SHMR while the halo masses of the low stellar mass sample are more consistent with the established SHMR. These results indicate that massive halos with a higher clustering bias tend to suppress AGN activity, probably due to the lack of available gas.
0

Miscentering of optical galaxy clusters based on sunyaev-zeldovich counterparts

Jupiter Ding et al.Nov 20, 2024
ABSTRACT The ‘miscentring effect’, i.e. the offset between a galaxy cluster’s optically defined centre and the centre of its gravitational potential, is a significant systematic effect on brightest cluster galaxy (BCG) studies and cluster lensing analyses. We perform a cross-match between the optical cluster catalogue from the Hyper Suprime-Cam (HSC) Survey S19A Data Release and the Sunyaev–Zeldovich cluster catalogue from Data Release 5 of the Atacama Cosmology Telescope (ACT). We obtain a sample of 186 clusters in common in the redshift range $0.1 \le z \le 1.4$ over an area of 469 deg$^2$. By modelling the distribution of centring offsets in this fiducial sample, we find a miscentred fraction (corresponding to clusters offset by more than 330 kpc) of ∼25 per cent, a value consistent with previous miscentring studies. We examine the image of each miscentred cluster in our sample and identify one of several reasons to explain the miscentring. Some clusters show significant miscentring for astrophysical reasons, i.e. ongoing cluster mergers. Others are miscentred due to non-astrophysical, systematic effects in the HSC data or the cluster-finding algorithm. After removing all clusters with clear, non-astrophysical causes of miscentring from the sample, we find a considerably smaller miscentred fraction, $\sim 10~\,\rm per\,cent$. We show that the gravitational lensing signal within 1 Mpc of miscentred clusters is considerably smaller than that of well-centred clusters, and we suggest that the ACT SZ centres are a better estimate of the true cluster potential centroid.