GL
G. Leloudas
Author with expertise in Gamma-Ray Bursts and Supernovae Connections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(81% Open Access)
Cited by:
5,390
h-index:
61
/
i10-index:
130
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A kilonova as the electromagnetic counterpart to a gravitational-wave source

S. Smartt et al.Oct 16, 2017
Observations and modelling of an optical transient counterpart to a gravitational-wave event and γ-ray burst reveal that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a source of heavy elements. Merging neutron stars are potential sources of gravitational waves and have long been predicted to produce jets of material as part of a low-luminosity transient known as a 'kilonova'. There is growing evidence that neutron-star mergers also give rise to short, hard gamma-ray bursts. A group of papers in this issue report observations of a transient associated with the gravitational-wave event GW170817—a signature of two neutron stars merging and a gamma-ray flash—that was detected in August 2017. The observed gamma-ray, X-ray, optical and infrared radiation signatures support the predictions of an outflow of matter from double neutron-star mergers and present a clear origin for gamma-ray bursts. Previous predictions differ over whether the jet material would combine to form light or heavy elements. These papers now show that the early part of the outflow was associated with lighter elements whereas the later observations can be explained by heavier elements, the origins of which have been uncertain. However, one paper (by Stephen Smartt and colleagues) argues that only light elements are needed for the entire event. Additionally, Eleonora Troja and colleagues report X-ray observations and radio emissions that suggest that the 'kilonova' jet was observed off-axis, which could explain why gamma-ray-burst detections are seen as dim. Gravitational waves were discovered with the detection of binary black-hole mergers1 and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova2,3,4,5. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate6. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst7,8. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of −1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90–140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
0

THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY

J. Frieman et al.Dec 12, 2007
The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005–7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.
0

SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL

C. Inserra et al.Jun 4, 2013
We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely PTF10hgi, SN2011ke, PTF11rks, SN2011kf and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high resolution, optical and near infrared spectrum from xshooter provides detection of a broad He I $\lambda$10830 emission line in the spectrum (+50d) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of \co, and would require 1-4M of \ni to produce the luminosity. These \ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favour energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive lightcurve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of $0.4\lesssim E$($10^{51}$erg) $\lesssim6.9$ and ejecta masses of $2.3\lesssim M_{ej}$(\M) $\lesssim 8.6$. The sample of five SL-SNe Ic presented here, combined with SN 2010gx - the best sampled SL-SNe Ic so far - point toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.
0

Identification of strontium in the merger of two neutron stars

D. Watson et al.Oct 23, 2019
Half of all of the elements in the Universe that are heavier than iron were created by rapid neutron capture. The theory underlying this astrophysical r-process was worked out six decades ago, and requires an enormous neutron flux to make the bulk of the elements1. Where this happens is still debated2. A key piece of evidence would be the discovery of freshly synthesized r-process elements in an astrophysical site. Existing models3-5 and circumstantial evidence6 point to neutron-star mergers as a probable r-process site; the optical/infrared transient known as a 'kilonova' that emerges in the days after a merger is a likely place to detect the spectral signatures of newly created neutron-capture elements7-9. The kilonova AT2017gfo-which was found following the discovery of the neutron-star merger GW170817 by gravitational-wave detectors10-was the first kilonova for which detailed spectra were recorded. When these spectra were first reported11,12, it was argued that they were broadly consistent with an outflow of radioactive heavy elements; however, there was no robust identification of any one element. Here we report the identification of the neutron-capture element strontium in a reanalysis of these spectra. The detection of a neutron-capture element associated with the collision of two extreme-density stars establishes the origin of r-process elements in neutron-star mergers, and shows that neutron stars are made of neutron-rich matter13.
0

A real-time fast radio burst: polarization detection and multiwavelength follow-up

Emily Petroff et al.Dec 12, 2014
Fast radio bursts (FRBs) are one of the most tantalizing mysteries of the radio sky; their progenitors and origins remain unknown and until now no rapid multiwavelength follow-up of an FRB has been possible. New instrumentation has decreased the time between observation and discovery from years to seconds, and enables polarimetry to be performed on FRBs for the first time. We have discovered an FRB (FRB 140514) in real-time on 14 May, 2014 at 17:14:11.06 UTC at the Parkes radio telescope and triggered follow-up at other wavelengths within hours of the event. FRB 140514 was found with a dispersion measure (DM) of 562.7(6) cm$^{-3}$ pc, giving an upper limit on source redshift of $z \lesssim 0.5$. FRB 140514 was found to be 21$\pm$7% (3-$\sigma$) circularly polarized on the leading edge with a 1-$\sigma$ upper limit on linear polarization $<10%$. We conclude that this polarization is intrinsic to the FRB. If there was any intrinsic linear polarization, as might be expected from coherent emission, then it may have been depolarized by Faraday rotation caused by passing through strong magnetic fields and/or high density environments. FRB 140514 was discovered during a campaign to re-observe known FRB fields, and lies close to a previous discovery, FRB 110220; based on the difference in DMs of these bursts and time-on-sky arguments, we attribute the proximity to sampling bias and conclude that they are distinct objects. Follow-up conducted by 12 telescopes observing from X-ray to radio wavelengths was unable to identify a variable multiwavelength counterpart, allowing us to rule out models in which FRBs originate from nearby ($z < 0.3$) supernovae and long duration gamma-ray bursts.
0

A PANCHROMATIC VIEW OF THE RESTLESS SN 2009ip REVEALS THE EXPLOSIVE EJECTION OF A MASSIVE STAR ENVELOPE

R. Margutti et al.Dec 10, 2013
The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. Here we present a comprehensive study of SN 2009ip during its remarkable rebrightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the Very Large Array, Swift, Fermi, Hubble Space Telescope, and XMM) constrain SN 2009ip to be a low energy (E ∼ 1050 erg for an ejecta mass ∼0.5 M☉) and asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitor star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at ∼5 × 1014 cm with M ∼ 0.1 M☉, ejected by the precursor outburst ∼40 days before the major explosion. We interpret the NIR excess of emission as signature of material located further out, the origin of which has to be connected with documented mass-loss episodes in the previous years. Our modeling predicts bright neutrino emission associated with the shock break-out if the cosmic-ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, which later interacted with material deposited in the surroundings by previous eruptions. Future observations will reveal if the massive luminous progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass loss, the physical origin of which has yet to be identified.
Load More