CS
Carlo Segre
Author with expertise in High-Temperature Superconductivity
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(33% Open Access)
Cited by:
2,712
h-index:
47
/
i10-index:
135
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Oxygen ordering and the orthorhombic-to-tetragonal phase transition in YBa2Cu3<...

P. Radaelli et al.Sep 1, 1987
In situ neutron powder diffraction measurements show that the orthorhombic-to-tetragonal phase transition in $\mathrm{Y}{\mathrm{Ba}}_{2}{\mathrm{Cu}}_{3}{\mathrm{O}}_{7\ensuremath{-}x}$, which occurs near 700\ifmmode^\circ\else\textdegree\fi{}C in a pure oxygen atmosphere, is an order-disorder transition in which the disordering of oxygen atoms into a normally vacant site destroys the one-dimensional Cu-O chains present in the room-temperature orthorhombic structure. For both structures, the oxygen stoichiometry decreases monotonically with increasing temperature. The transition temperature depends on the oxygen partial pressure and occurs when the stoichiometry is near Y${\mathrm{Ba}}_{2}$${\mathrm{Cu}}_{3}$${\mathrm{O}}_{6.5}$. The tetragonal structure has a partially occupied, nearly octahedral Cu-O arrangement, in contrast to the orthorhombic structure which has one-dimensional Cu-O chains. The observed depression of the superconducting transition temperature in tetragonal $\mathrm{Y}{\mathrm{Ba}}_{2}{\mathrm{Cu}}_{3}{\mathrm{O}}_{7\ensuremath{-}x}$, which has been quenched from high temperature, could result either from the disordering of oxygen atoms which destroys the one-dimensional chains or from the absence of ${\mathrm{Cu}}^{3+}$ ions.
0
Paper
Citation1,137
0
Save
0

Structural modeling of high-entropy oxides battery anodes using x-ray absorption spectroscopy

Otávio Marques et al.Jun 10, 2024
High-entropy oxides (HEOs) are single phase solid solutions where five or more metals share the same sublattice, giving rise to unexpected features in various fields of applications. Recently, HEOs have emerged as an alternative conversion electrode anode material for next-generation Li-ion batteries, where the combination of several different elements in a single solid solution can synergistically act to overcome some of its main drawbacks, improving performance. Due to their chemical complexity, x-ray absorption spectroscopy (XAS) emerges as an appropriate technique to study the electronic (x-ray absorption near edge structure, XANES) and local structure (extended x-ray absorption fine structure, EXAFS) of these compounds as a function of cycling. This work aims to highlight the capabilities of XAS as an element-specific probe to understand a material’s structure at the atomistic level through EXAFS modeling of (MgFeCoNiCuZn)O high-entropy system and how to extract valuable information about the bond distance, number of near neighbors, and local disorder, which are crucial to a full understanding of the electrochemical reaction mechanisms of such battery electrodes.