MJ
Mathilde Jauzac
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
229
h-index:
36
/
i10-index:
74
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high-redshift studies

Johan Richard et al.Aug 14, 2014
Extending over three Hubble Space Telescope (HST) cycles, the Hubble Frontier Fields (HFF) initiative constitutes the largest commitment ever of HST time to the exploration of the distant Universe via gravitational lensing by massive galaxy clusters. We here present models of the mass distribution in the six HFF cluster lenses, derived from a joint strong- and weak-lensing analysis anchored by a total of 88 multiple-image systems identified in existing HST data. The resulting maps of the projected mass distribution and of the gravitational magnification effectively calibrate the HFF clusters as gravitational telescopes. Allowing the computation of search areas in the source plane, these maps are provided to the community to facilitate the exploitation of forthcoming HFF data for quantitative studies of the gravitationally lensed population of background galaxies. Our models of the gravitational magnification afforded by the HFF clusters allow us to quantify the lensing-induced boost in sensitivity over blank-field observations and predict that galaxies at $z>10$ and as faint as m(AB)=32 will be detectable, up to 2 magnitudes fainter than the limit of the Hubble Ultra Deep Field.
0

Strong gravitational lensing’s ‘external shear’ is not shear

Amy Etherington et al.Jun 3, 2024
ABSTRACT The distribution of mass in galaxy-scale strong gravitational lenses is often modelled as an elliptical power-law plus ‘external shear’, which notionally accounts for neighbouring galaxies and cosmic shear along our line of sight. A small amount of external shear could come from these sources, but we show that the vast majority does not. Except in a handful of rare systems, the best-fitting values do not correlate with independent measurements of line-of-sight shear: from weak lensing in 45 Hubble Space Telescope images, or in 50 mock images of lenses with complex distributions of mass. Instead, the best-fit external shear is aligned with the major or minor axis of 88 per cent of lens galaxies; and the amplitude of the external shear increases if that galaxy is discy. We conclude that ‘external shear’ attached to a power-law model is not physically meaningful, but a fudge to compensate for lack of model complexity. Since it biases other model parameters that are interpreted as physically meaningful in several science analyses (e.g. measuring galaxy evolution, dark matter physics or cosmological parameters), we recommend that future studies of galaxy-scale strong lensing should employ more flexible mass models.
0
Paper
Citation3
0
Save
0

ALMA Lensing Cluster Survey: Deep 1.2 mm Number Counts and Infrared Luminosity Functions at z ≃ 1–8

Seiji Fujimoto et al.Nov 27, 2024
Abstract We present a statistical study of 180 dust continuum sources identified in 33 massive cluster fields by the Atacama Large Millimeter/submillimeter Array Lensing Cluster Survey (ALCS) over a total of 133 arcmin 2 area, homogeneously observed at 1.2 mm. ALCS enables us to detect extremely faint millimeter sources by lensing magnification, including near-infrared (NIR) dark objects showing no counterparts in existing Hubble Space Telescope and Spitzer images. The dust continuum sources belong to a blind sample ( N = 141) with signal-to-noise ratio (S/N) ≳ 5.0 (a purity of >0.99) or a secondary sample ( N = 39) with S/N = 4.0–5.0 screened by priors. With the blind sample, we securely derive 1.2 mm number counts down to ∼7 μ Jy, and find that the total integrated 1.2 mm flux is 20.7 − 6.5 + 8.5 Jy deg −2 , resolving ≃80% of the cosmic infrared background light. The resolved fraction varies by a factor of 0.6–1.1 due to the completeness correction depending on the spatial size of the millimeter emission. We also derive infrared (IR) luminosity functions (LFs) at z = 0.6–7.5 with the 1 / V max method, finding the redshift evolution of IR LFs characterized by positive luminosity and negative density evolution. The total (= UV + IR) cosmic star formation rate density (SFRD) at z > 4 is estimated to be 161 − 21 + 25 % of the Madau and Dickinson measurements mostly based on rest-frame UV surveys. Although our general understanding of the cosmic SFRD is unlikely to change beyond a factor of 2, these results add to the weight of evidence for an additional (≈60%) SFRD component contributed by the faint millimeter population, including NIR-dark objects.
0

SuperBIT Superpressure Flight Instrument Overview and Performance: Near-diffraction-limited Astronomical Imaging from the Stratosphere

Ajay Gill et al.Jul 22, 2024
Abstract SuperBIT was a 0.5 m near-UV to near-infrared wide-field telescope that launched on a NASA superpressure balloon into the stratosphere from New Zealand for a 45-night flight. SuperBIT acquired multiband images of galaxy clusters to study the properties of dark matter using weak gravitational lensing. We provide an overview of the instrument and its various subsystems. We then present the instrument performance from the flight, including the telescope and image stabilization system, the optical system, the power system, and the thermal system. SuperBIT successfully met the instrument’s technical requirements, achieving a telescope pointing stability of 0.″34 ± 0.″10, a focal plane image stability of 0.″055 ± 0.″027, and a point-spread function FWHM of ∼0.″35 over 5-minute exposures throughout the 45-night flight. The telescope achieved a near-diffraction-limited point-spread function in all three science bands ( u , b , and g ). SuperBIT served as a pathfinder to the GigaBIT observatory, which will be a 1.34 m near-UV to near-infrared balloon-borne telescope.
0

A complex node of the cosmic web associated with the massive galaxy cluster MACS J0600.1-2008

Lukas Furtak et al.Aug 12, 2024
Abstract MACS J0600.1-2008 (MACS0600) is an X-ray luminous, massive galaxy cluster at zd = 0.43, studied previously by the REionization LensIng Cluster Survey (RELICS) and ALMA Lensing Cluster Survey (ALCS) projects which revealed a complex, bimodal mass distribution and an intriguing high-redshift object behind it. Here, we report on the results of a combined analysis of the extended strong lensing (SL), X-ray, Sunyaev–Zeldovich (SZ), and galaxy luminosity-density properties of this system. Using new JWST and ground-based Gemini-N and Keck data, we obtain 13 new spectroscopic redshifts of multiply imaged galaxies and identify 12 new photometric multiple-image systems and candidates, including two multiply imaged z ∼ 7 objects. Taking advantage of the larger areal coverage, our analysis reveals an additional bimodal, massive SL structure which we measure spectroscopically to lie adjacent to the cluster and whose existence was implied by previous SL-modeling analyses. While based in part on photometric systems identified in ground-based imaging requiring further verification, our extended SL model suggests that the cluster may have the second-largest critical area and effective Einstein radius observed to date, Acrit ≃ 2.16 arcmin2 and θE = 49.7″ ± 5.0″ for a source at zs = 2, enclosing a total mass of M( &lt; θE) = (4.7 ± 0.7) × 1014 M⊙. These results are also supported by the galaxy luminosity distribution, the SZ and X-ray data. Yet another, probably related massive cluster structure, discovered in X-rays 5′ (1.7 Mpc) further north, suggests that MACS0600 is part of an even larger filamentary structure. This discovery adds to several recent detections of massive structures around SL galaxy clusters and establishes MACS0600 as a prime target for future high-redshift surveys with JWST.
0

Mass and light in galaxy clusters: The case of Abell 370

M. Limousin et al.Nov 29, 2024
In the cold dark matter (CDM) paradigm, an association between the hypothetic dark matter (DM) and its stellar counterpart is expected. However, parametric strong-lensing studies of galaxy clusters often display misleading features: DM components on the group or cluster scale without any stellar counterpart, offsets between the two components that are larger than what might be allowed by CDM or self-interacting DM models, or significant unexplained external shear components. This is the case in the galaxy cluster Abell 370, whose mass distribution has been the subject of several studies that were motivated by a wealth of data. The cluster was described parametrically with strong-lensing techniques by a model with four dark matter clumps and galaxy-scale perturbers, and with a significant external shear component, whose physical origin remains a challenge. The dark matter distribution features a mass clump without a stellar counterpart and a significant offset between one of the dark matter clumps and its associated stellar counterpart. This paper is based on BUFFALO data, and we begin by revisiting this mass model. Sampling this complex parameter space with Markov chain Monte Carlo (MCMC) techniques, we find a solution that does not require any external shear and provides a slightly better root mean square (RMS) than previous models (0.7″ compared to 0.9″). Investigating this new solution further, in particular, by varying the parameters that lead the MCMC sampler, we present a class of models that can accurately reproduce the strong-lensing data, but whose parameters for the dark matter component are poorly constrained. This limits any insights into its properties. We then developed a model in which each large-scale dark matter component must be associated with a stellar counterpart. This model with three dark matter clumps cannot reproduce the observational constraints with an RMS smaller than 2.3″, and the parameters describing this dark matter component remain poorly constrained. Examining the total projected mass maps, we find a good agreement between the total mass and the stellar distribution, which are both bimodal to first order. We interpret the misleading features of the mass model with four dark matter clumps and the failure of the mass model with three dark matter clumps as being symptomatic of the lacking realism of a parametric description of the dark matter distribution in such a complex merging cluster. We encourage caution and attention on the outputs of parametric strong-lensing modelling. We briefly discuss the implications of our results for using Abell 370 as a gravitational telescope. With the class of models that reproduce the strong- lensing data, we computed the magnifications for background Ly α emitters, and we present the critical curves obtained for the redshift of the Dragon arc, whose recent observations with the James Webb Space Telescope prompted interest. Finally, in light of our results, we discuss the strategy of choosing merging (multi-modal) clusters as gravitational telescopes compared to simple (unimodal) clusters.