We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.Received 6 December 2017DOI:https://doi.org/10.1103/PhysRevLett.120.030501© 2018 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasQuantum channelsQuantum communicationQuantum cryptographyQuantum networksQuantum opticsQuantum Information, Science & TechnologyAtomic, Molecular & Optical