FA
Frank Arute
Author with expertise in Quantum Computing and Simulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
1,528
h-index:
20
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Hartree-Fock on a superconducting qubit quantum computer

Frank Arute et al.Aug 28, 2020
+78
R
K
F
Twelve-qubit quantum computing for chemistry Accurate electronic structure calculations are considered one of the most anticipated applications of quantum computing that will revolutionize theoretical chemistry and other related fields. Using the Google Sycamore quantum processor, Google AI Quantum and collaborators performed a variational quantum eigensolver (VQE) simulation of two intermediate-scale chemistry problems: the binding energy of hydrogen chains (as large as H 12 ) and the isomerization mechanism of diazene (see the Perspective by Yuan). The simulations were performed on up to 12 qubits, involving up to 72 two-qubit gates, and show that it is possible to achieve chemical accuracy when VQE is combined with error mitigation strategies. The key building blocks of the proposed VQE algorithm are potentially scalable to larger systems that cannot be simulated classically. Science , this issue p. 1084 ; see also p. 1054
1

Quantum approximate optimization of non-planar graph problems on a planar superconducting processor

Matthew Harrigan et al.Feb 4, 2021
+85
T
Z
M
We demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the (planar) connectivity graph of our hardware; however, we also apply the QAOA to the Sherrington-Kirkpatrick model and MaxCut, both high dimensional graph problems for which the QAOA requires significant compilation. Experimental scans of the QAOA energy landscape show good agreement with theory across even the largest instances studied (23 qubits) and we are able to perform variational optimization successfully. For problems defined on our hardware graph we obtain an approximation ratio that is independent of problem size and observe, for the first time, that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size but still provides an advantage over random guessing for circuits involving several thousand gates. This behavior highlights the challenge of using near-term quantum computers to optimize problems on graphs differing from hardware connectivity. As these graphs are more representative of real world instances, our results advocate for more emphasis on such problems in the developing tradition of using the QAOA as a holistic, device-level benchmark of quantum processors.
0

Suppressing quantum errors by scaling a surface code logical qubit

Rajeev Acharya et al.Feb 22, 2023
+96
R
I
R
Practical quantum computing will require error rates well below those achievable with physical qubits. Quantum error correction1,2 offers a path to algorithmically relevant error rates by encoding logical qubits within many physical qubits, for which increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low for logical performance to improve with increasing code size. Here we report the measurement of logical qubit performance scaling across several code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find that our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, in terms of both logical error probability over 25 cycles and logical error per cycle ((2.914 ± 0.016)% compared to (3.028 ± 0.023)%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7 × 10-6 logical error per cycle floor set by a single high-energy event (1.6 × 10-7 excluding this event). We accurately model our experiment, extracting error budgets that highlight the biggest challenges for future systems. These results mark an experimental demonstration in which quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.
0

Measurement-induced entanglement and teleportation on a noisy quantum processor

Jesse Hoke et al.Oct 18, 2023
+160
E
M
J
Measurement has a special role in quantum theory1: by collapsing the wavefunction, it can enable phenomena such as teleportation2 and thereby alter the 'arrow of time' that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time3-10 that go beyond the established paradigms for characterizing phases, either in or out of equilibrium11-13. For present-day noisy intermediate-scale quantum (NISQ) processors14, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping9,15-17 to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling3,4 to measurement-induced teleportation18. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors.