AT
Akash Tariq
Author with expertise in Soil Carbon Dynamics and Nutrient Cycling in Ecosystems
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(14% Open Access)
Cited by:
19
h-index:
37
/
i10-index:
89
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Using Halothermal Time Model to Describe Barley (Hordeumvulgare L.) Seed Germination Response to Water Potential and Temperature

Abd Ullah et al.Jan 29, 2022
Barley (Hordeum vulgare L.) is a salt-tolerant crop with considerable economic value in salinity-affected arid and semiarid areas. In the laboratory experiment, the halothermal time (HaloTT) model was used to examine barley seed germination (SG) at six constant cardinal temperatures (Ts) of 15, 20, 25, 30, 35, and 40 °C under five different water potentials (ψs) of 0, -0.5, -1.5, -1.0, and -2.0 MPa. Results showed that at optimum moisture (0 MPa), the highest germination percentage (GP) was recorded at 20 °C and the lowest at 40 °C. Moreover, GP increased with the accelerated aging period (AAP) and significantly (p ≤ 0.05) decreased with high T. In addition, with a decrease of ψ from 0 to -0.5, -1, 1.5, and -2.0 MPa, GP decreased by 93.33, 76.67, 46.67, and 33.33%, respectively, in comparison with 0 MPa. The maximum halftime constant (θHalo) and coefficient of determination (R2) values were recorded at 20 °C and 30 °C, respectively. The optimum temperature (To) for barley is 20 °C, base Ψ of 50th percentile (Ψb (50)) is -0.23 Mpa, and standard deviation of Ψb (σΨb) is 0.21 MPa. The cardinal Ts for germination is 15 °C (Tb), 20 °C (To), and 40 °C (Tc). The GP, germination rate index (GRI), germination index (GI), coefficient of the velocity of germination (CVG), germination energy (GE), seed vigor index I and II (SVI-I & II), Timson germination index (GI), and root shoot ratio (RSR) were recorded maximum at 0 MPa at 20 °C and minimum at -2.0 MPa at 40 °C. Mean germination time (MGT) and time to 50% germination (T 50%) were maximum at -2 MPa at 40 °C, and minimum at 20 °C, respectively. In conclusion, the HaloTT model accurately predicted the germination time course of barley in response to T, Ψ, or NaCl. Therefore, barley can be regarded as a salt-tolerant plant and suitable for cultivation in arid and semi-arid regions due to its high resistance to salinity.
0
Paper
Citation17
0
Save
0

Effects of long-term nighttime warming on extractable soil element composition in a Mediterranean shrubland

Zhaobin Mu et al.Aug 23, 2024
Understanding the soil biogeochemical responses to increasing global warming in the near future is essential for improving our capacity to mitigate the impacts of climate change on highly vulnerable Mediterranean ecosystems. Previous studies have primarily focused on the effects of warming on various biogeochemical processes. However, there is limited knowledge about how the changes in water availability associated to high temperatures can alter the bioavailability and dynamics of soil elements, thereby impacting ecosystem productivity, species composition, and pollution through soil biogeochemical and hydrological processes. In this study, we investigated the effects of long-term nighttime warming on the extractable concentrations of organic carbon (EOC), total nitrogen (ETN), total phosphorus (ETP), and 17 mineral elements (arsenic (As), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), sulfur (S), strontium (Sr), vanadium (V), and zinc (Zn)) through environmental experiments in a semi-arid Mediterranean shrubland. We explored the potential biotic and abiotic mechanisms underlying the seasonal and long-term changes in extractable-mobilizable elemental composition and concentrations. Our findings revealed that prolonged warming led to higher mean annual soil temperature (with an average increase of 0.67 °C from 1999 to 2014), accumulation of soil organic matter (EOC) and extractable concentrations of soil elements (particularly increased ETP and extractable Ca, Mg, Cu, Sr, Mn, and As). These changes were attributed to uniformly higher activities of extracellular soil enzymes and/or lower plant photosynthetic and nutrient uptake capacity linked to more water deficit under warmer conditions. Seasonality unevenly altered element extractable concentrations, with soil microclimate (temperature and water content) and biological (soil microbial and plant) activity being the main drivers of this variability, thus influencing soil element composition. These results suggest significant fluctuations in the extractable concentrations of specific mineral elements in these soils, implying potential future variations in soil element composition as well as the loss of total element concentrations/contents in semi-arid Mediterranean ecosystems due to increasing warming. Therefore, these findings enhance our ability to predict ecosystem management strategies and mitigate the observed negative impacts on plant-soil systems and water quality in the context of climate change.
0
Paper
Citation1
0
Save
0

Depth-dependent responses of soil bacterial communities to salinity in an arid region

Xinping Dong et al.Jul 1, 2024
Soil salinization adversely affects soil fertility and plant growth in arid region worldwide. However, as the drivers of nutrient cycling, the response of microbial communities to soil salinization is poorly understood. This study characterized bacterial communities in different soil layers along a natural salinity gradient in the Karayulgun River Basin, located northwest of the Taklimakan desert in China, using the 16S rRNA Miseq-sequencing technique. The results revealed a significant filtering effect of salinity on the bacterial community in the topsoil. Only the α-diversity (Shannon index) in the topsoil (0-10 cm) significantly decreased with increasing salinity levels, and community dissimilarity in the topsoil was enhanced with increasing salinity, while there was no significant relationship in the subsoil. BugBase predictions revealed that aerobic, facultatively anaerobic, gram-positive, and stress-tolerant bacterial phenotypes in the topsoil was negatively related to salinity. The average degree and number of modules of the bacterial co-occurrence network the topsoil were lower under higher salinity levels, which contrasted with the trends in the subsoil, suggesting an unstable bacterial network in the topsoil caused by higher salinity. The average path length among bacterial species increased in both soil layers under high salinity conditions. Plant diversity and available nitrogen were the main drivers affecting community composition in the topsoil, while available potassium largely shaped community composition in the subsoil. This study provides solid evidence that bacterial communities adapt to salinity through the adjustment of microbial composition based on soil depth. This information will contribute to the sustainable management of drylands and improved predictions and responses to changes in ecosystems caused by climate change.
0
0
Save
0

Afforestation With Xerophytic Shrubs Promoted Soil Organic Carbon Stability in a Hyper‐Arid Environment of Desert

Guangxing Zhao et al.Nov 14, 2024
ABSTRACT In desert ecosystems, afforestation with xerophytic shrubs has the potential to significantly increase soil nutrient levels by mitigating wind and soil erosion. Nevertheless, further investigation is required to elucidate the changes in soil organic carbon (SOC) fractions and stability on different soil depths with afforestation years. We collected soil samples from the 0–20, 20–60, and 60–100 cm depths of three xerophytic shrublands ages (3, 7, and 10 years), with a natural desert as the control, in a hyper‐arid desert region. We investigated the variations of SOC fractions (stable and active C) and stability (stability index and MAOC:POC ratios) after afforestation. The results showed that the rate of increase in SOC fractions and stability did not follow a linear trajectory with afforestation years. Instead, they accelerated around 7 years but then decreased after 10 years. The increase in SOC stability was primarily attributed to the greater increase in stable C within the total SOC pool. Afforestation increased the concentration of ROC from 0.26 to 0.89 g kg −1 and MAOC from 0.11 to 0.78 g kg −1 . Afforestation increased SOC stability by 74.36%–231% compared to the CK in the 0–100 cm. SOC stability in the 60–100 cm was higher than that in the 0–20 cm layer, while SOC stability varied insignificantly across soil layers. The strongest direct positive impact on SOC stability was attributed to changes in soil physicochemical properties rather than soil microbial biomass or aggregate stability. These findings contribute to our understanding of the importance of afforestation in increasing SOC stability in desert ecosystems.