JG
Jinshan Guo
Author with expertise in Electrospun Nanofibers in Biomedical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
256
h-index:
40
/
i10-index:
81
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Chitosan nanofibrous scaffold with graded and controlled release of ciprofloxacin and BMP-2 nanoparticles for the conception of bone regeneration

Sihan Zhang et al.Jan 1, 2024
The repair of bone defects using grafts is commonly employed in clinical practice. However, the risk of infection poses a significant concern. Tissue engineering scaffolds with antibacterial functionalities offer a better approach for bone tissue repair. In this work, firstly, two kinds of nanoparticles were prepared using chitosan to complex with ciprofloxacin and BMP-2, respectively. The ciprofloxacin complex nanoparticles improved the dissolution efficiency of ciprofloxacin achieving a potent antibacterial effect and cumulative release reached 95 % in 7 h. For BMP-2 complexed nanoparticles, the release time points can be programmed at 80 h, 100 h or 180 h by regulating the number of coating chitosan layers. Secondly, a functional scaffold was prepared by combining the two nanoparticles with chitosan nanofibers. The microscopic nanofiber structure of the scaffold with 27.28 m2/g specific surface area promotes cell adhesion, high porosity provides space for cell growth, and facilitates drug loading and release. The multifunctional scaffold exhibits programmed release function, and has obvious antibacterial effect at the initial stage of implantation, and releases BMP-2 to promote osteogenic differentiation of mesenchymal stem cells after the antibacterial effect ends. The scaffold is expected to be applied in clinical bone repair and graft infection prevention.
0
Citation1
0
Save
0

An Optimized Decellularized Extracellular Matrix from Dental Pulp Stem Cell Sheets Promotes Axonal Regeneration by Multiple Modes in Spinal Cord Injury Rats

Wei Qiu et al.Aug 15, 2024
Abstract In the field of tissue engineering, the extracellular matrix (ECM) is considered an important element for promoting neural regeneration after spinal cord injury (SCI). Dental pulp stem cells (DPSCs), mesenchymal stem cells that originate from the neural crest, are easy to harvest and culture in vitro, express a variety of neurotrophic factors (NTFs) and deposit a large amount of ECM, making them a good choice for stem cell‐ or ECM‐based treatment of SCI. In the present study, decellularized extracellular matrix (dECM) derived from DPSC sheets is used for the treatment of SCI. Optimization experiments reveal that incubating DPSC sheets with 1% Triton X‐100 for 5 min is the best procedure for preparing DPSC dECM. It is found that DPSC dECM promotes nerve repair and regeneration after SCI and restores hindlimb motor function in rats. Mechanistically, DPSC dECM facilitates the migration and neural differentiation of neural stem cells, as well as M2 polarization of microglia, and inhibits the formation of glial scars. This study suggests that the use of DPSC dECM is a potential strategy for the treatment of SCI.