ML
Mattia Libralato
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
11
h-index:
33
/
i10-index:
60
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The JWST Galactic Center Survey -- A White Paper

R. Schöedel et al.Jan 1, 2023
The inner hundred parsecs of the Milky Way hosts the nearest supermassive black hole, largest reservoir of dense gas, greatest stellar density, hundreds of massive main and post main sequence stars, and the highest volume density of supernovae in the Galaxy. As the nearest environment in which it is possible to simultaneously observe many of the extreme processes shaping the Universe, it is one of the most well-studied regions in astrophysics. Due to its proximity, we can study the center of our Galaxy on scales down to a few hundred AU, a hundred times better than in similar Local Group galaxies and thousands of times better than in the nearest active galaxies. The Galactic Center (GC) is therefore of outstanding astrophysical interest. However, in spite of intense observational work over the past decades, there are still fundamental things unknown about the GC. JWST has the unique capability to provide us with the necessary, game-changing data. In this White Paper, we advocate for a JWST NIRCam survey that aims at solving central questions, that we have identified as a community: i) the 3D structure and kinematics of gas and stars; ii) ancient star formation and its relation with the overall history of the Milky Way, as well as recent star formation and its implications for the overall energetics of our galaxy's nucleus; and iii) the (non-)universality of star formation and the stellar initial mass function. We advocate for a large-area, multi-epoch, multi-wavelength NIRCam survey of the inner 100\,pc of the Galaxy in the form of a Treasury GO JWST Large Program that is open to the community. We describe how this survey will derive the physical and kinematic properties of ~10,000,000 stars, how this will solve the key unknowns and provide a valuable resource for the community with long-lasting legacy value.
0

JWST-TST High Contrast: Achieving Direct Spectroscopy of Faint Substellar Companions Next to Bright Stars with the NIRSpec Integral Field Unit

Jean-Baptiste Ruffio et al.Jul 15, 2024
Abstract The JWST NIRSpec integral field unit (IFU) presents a unique opportunity to observe directly imaged exoplanets from 3 to 5 μ m at moderate spectral resolution ( R ∼ 2700) and thereby better constrain the composition, disequilibrium chemistry, and cloud properties of their atmospheres. In this work, we present the first NIRSpec IFU high-contrast observations of a substellar companion that requires starlight suppression techniques. We develop specific data-reduction strategies to study faint companions around bright stars and assess the performance of NIRSpec at high contrast. First, we demonstrate an approach to forward model the companion signal and the starlight directly in the detector images, which mitigates the effects of NIRSpec’s spatial undersampling. We demonstrate a sensitivity to planets that are 3 × 10 −6 fainter than their stars at 1″, or 3 × 10 −5 at 0.″3. Then, we implement a reference star point-spread function subtraction and a spectral extraction that does not require spatially and spectrally regularly sampled spectral cubes. This allows us to extract a moderate resolution ( R ∼ 2,700) spectrum of the faint T dwarf companion HD 19467 B from 2.9 to 5.2 μ m with a signal-to-noise ratio of ∼10 per resolution element. Across this wavelength range, HD 19467 B has a flux ratio varying between 10 −5 and 10 −4 and a separation relative to its star of 1.″6. A companion paper by Hoch et al. more deeply analyzes the atmospheric properties of this companion based on the extracted spectrum. Using the methods developed here, NIRSpec’s sensitivity may enable direct detection and spectral characterization of relatively old (∼1 Gyr), cool (∼250 K), and closely separated (∼3–5 au) exoplanets that are less massive than Jupiter.
0
Citation2
0
Save
0

oMEGACat. III. Multiband Photometry and Metallicities Reveal Spatially Well-mixed Populations within ω Centauri’s Half-light Radius

Maria Nitschai et al.Jul 26, 2024
Abstract ω Centauri, the most massive globular cluster in the Milky Way, has long been suspected to be the stripped nucleus of a dwarf galaxy that fell into the Galaxy a long time ago. There is considerable evidence for this scenario including a large spread in metallicity and an unusually large number of distinct subpopulations seen in photometric studies. In this work, we use new Multi-Unit Spectroscopic Explorer spectroscopic and Hubble Space Telescope photometric catalogs to investigate the underlying metallicity distributions as well as the spatial variations of the populations within the cluster up to its half-light radius. Based on 11,050 member stars, the [M/H] distribution has a median of (−1.614 ± 0.003) dex and a large spread of ∼1.37 dex, reaching from −0.67 to −2.04 dex for 99.7% of the stars. In addition, we show the chromosome map of the cluster, which separates the red giant branch stars into different subpopulations, and analyze the subpopulations of the most metal-poor component. Finally, we do not find any metallicity gradient within the half-light radius, and the different subpopulations are well mixed.
0

Combined Gemini-South and HST photometric analysis of the globular cluster NGC 6558. The age of the metal-poor population of the Galactic bulge

S. Souza et al.Aug 7, 2024
NGC 6558 is a low-galactic-latitude globular cluster projected in the direction of the Galactic bulge. Due to high reddening, this region presents challenges in deriving accurate parameters, which require meticulous photometric analysis. We present a combined analysis of near-infrared and optical photometry from multi-epoch high-resolution images collected with Gemini-South/GSAOI+GeMS (in the $J$ and $K_S$ filters) and HST /ACS (in the F606W and F814W filters). We aim to refine the fundamental parameters of NGC 6558, utilising high-quality Gemini-South/GSAOI and HST /ACS photometries. Additionally, we intend to investigate its role in the formation of the Galactic bulge. We performed a meticulous differential reddening correction to investigate the effect of contamination from Galactic bulge field stars. To derive the fundamental parameters — age, distance, reddening, and the total-to-selective coefficient — we employed a Bayesian isochrone fitting. The results from high-resolution spectroscopy and RR Lyrae stars were implemented as priors. For the orbital parameters, we employed a barred Galactic mass model. Furthermore, we analysed the age-metallicity relation to contextualise NGC 6558 within the Galactic bulge's history. We studied the impact of two differential reddening corrections on the age derivation. When removing as much as possible of the Galactic bulge field star contamination, the isochrone fitting combined with synthetic colour-magnitude diagrams gives a distance of $8.41^ $ kpc, an age of $13.0 0.9$ Gyr, and a reddening of E($B-V$)$\,\,=0.34 We derived a total-to-selective coefficient of R$_V = 3.2 thanks to the simultaneous near-infrared$-$optical synthetic colour-magnitude diagram fitting, which, aside from errors, agrees with the commonly used value. The orbital parameters showed that NGC 6558 is confined within the inner Galaxy and it is not compatible with a bar-shape orbit, indicating that it is a bulge member. Assembling the old and moderately metal-poor Fe/H clusters in the Galactic bulge, we derived their age-metallicity relation with star formation starting at $13.6 Gyr and effective yields of $ Z_ odot$. The old age derived for NGC 6558 is compatible with other clusters with similar metallicity and a blue horizontal branch in the Galactic bulge, which constitute the moderately metal-poor globular clusters. The age-metallicity relation shows that the starting age of star formation is compatible with the age of NGC 6558, and the chemical enrichment is ten times faster than the ex situ globular cluster branch.
0

oMEGACat. IV. Constraining the Ages of Omega Centauri Subgiant Branch Stars with HST and MUSE

Callie Clontz et al.Nov 28, 2024
Abstract We present age estimates for over 8100 subgiant branch (SGB) stars in Omega Centauri ( ω Cen) to study its star formation history. Our large data set, which combines multi-wavelength Hubble Space Telescope photometry with MUSE metallicities, provides an unprecedented opportunity to measure individual stellar ages. We do this by fitting each star’s photometry and metallicity with theoretical isochrones that are embedded with an empirical [C + N + O]–[Fe/H] relation specific to ω Cen. The bulk of the stars have ages between 13 and 10 Gyr, with the mean stellar age being 12.08 ± 0.01 Gyr and the median age uncertainty being 0.68 Gyr. From these ages we construct the most complete age–metallicity relation for ω Cen to date. We find that the mean age of stars decreases with increasing metallicity and find two distinct streams in the age–metallicity plane, hinting at different star formation pathways. We derive an intrinsic spread in the ages of 0.75 ± 0.01 Gyr for the whole cluster, with the age spread showing a clear increase with metallicity. We verify the robustness of our age estimations by varying isochrone parameters and constraining our systematics. We find the C + N + O relation to be the most critical consideration for constraining the age–metallicity relation. We also present an SGB chromosome map with age information. In the future these stellar ages could be combined with chemical abundances to study age differences in subpopulations and uncover the chemical evolution history of this massive nuclear star cluster.
0

Euclid: High-precision imaging astrometry and photometry from Early Release Observations

Mattia Libralato et al.Dec 1, 2024
The instruments at the focus of the Euclid space observatory offer superb, diffraction-limited imaging over an unprecedented (from space) wide field of view of 0.57 deg 2 . This exquisite image quality has the potential to produce high-precision astrometry for point sources once the undersampling of Euclid’s cameras is taken into account by means of accurate, effective point spread function (ePSF) modelling. We present a complex, detailed workflow to simultaneously solve for the geometric distortion (GD) and model the undersampled ePSFs of the Euclid detectors. Our procedure was successfully developed and tested with data from the Early Release Observations (ERO) programme focused on the nearby globular cluster NGC 6397. Our final one-dimensional astrometric precision for a well-measured star just below saturation is 0.7 mas (0.007 pixel) for the Visible Instrument (VIS) and 3 mas (0.01 pixel) for the Near-Infrared Spectrometer and Photometer (NISP). Finally, we present a specific scientific application of this high-precision astrometry: the combination of Euclid and Gaia data to compute proper motions and study the internal kinematics of NGC 6397. Future work, when more data become available, will allow for a better characterisation of the ePSFs and GD corrections that are derived here, along with assessment of their temporal stability, and their dependencies on the spectral energy distribution of the sources as seen through the wide-band filters of Euclid .
0

The James Webb Space Telescope Absolute Flux Calibration. II. Mid-infrared Instrument Imaging and Coronagraphy

K. Gordon et al.Dec 4, 2024
Abstract The absolute flux calibration of the Mid-Infrared Instrument imaging and coronagraphy is based on observations of multiple stars taken during the first 2.5 yr of James Webb Space Telescope operations. The observations were designed to ensure that the flux calibration is valid for a range of flux densities, different subarrays, and different types of stars. The flux calibration was measured by combining observed aperture photometry corrected to infinite aperture with predictions based on previous observations and models of stellar atmospheres. A subset of these observations was combined with model point-spread functions to measure the corrections to infinite aperture. Variations in the calibration factor with time, flux density, background level, type of star, subarray, integration time, rate, and well depth were investigated, and the only significant variations were with time and subarray. Observations of the same star taken approximately every month revealed a modest time-dependent response loss seen mainly at the longest wavelengths. This loss is well characterized by a decaying exponential with a time constant of ∼200 days. After correcting for the response loss, the band-dependent scatter around the corrected average (i.e., repeatability) was found to range from 0.1% to 1.2%. Signals in observations taken with different subarrays can be lower by up to 3.4% compared to FULL frame. After correcting for the time and subarray dependencies, the scatter in the calibration factors measured for individual stars ranges from 1% to 4% depending on the band. The formal uncertainties on the flux calibration averaged for all observations are 0.3%–1.0%, with longer-wavelength bands generally having larger uncertainties.