PB
Patrick Boundja
Author with expertise in Biodiversity Conservation and Ecosystem Management
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
1,544
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Asynchronous carbon sink saturation in African and Amazonian tropical forests

Wannes Hubau et al.Mar 4, 2020
Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1–3. Climate-driven vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53–0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7–9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth’s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth’s climate. Unlike Amazonian forests, African forests have maintained their carbon sink until recently but by 2030 the African carbon sink will have shrunk by 14 per cent and the Amazonian sink will reach almost zero.
0
Paper
Citation598
0
Save
1

Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

J. Slik et al.Jul 9, 2013
Abstract Aim Large trees (d.b.h. ≥ 70 cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore which intrinsic (species trait) and extrinsic (environment) variables are associated with the density of large trees and forest biomass at continental and pan‐tropical scales. Location Pan‐tropical. Methods Aboveground biomass ( AGB) was calculated for 120 intact lowland moist forest locations. Linear regression was used to calculate variation in AGB explained by the density of large trees. Akaike information criterion weights ( AICc ‐wi) were used to calculate averaged correlation coefficients for all possible multiple regression models between AGB /density of large trees and environmental and species trait variables correcting for spatial autocorrelation. Results Density of large trees explained c . 70% of the variation in pan‐tropical AGB and was also responsible for significantly lower AGB in Neotropical [287.8 (mean) ± 105.0 ( SD ) M g ha −1 ] versus Palaeotropical forests (Africa 418.3 ± 91.8 M g ha −1 ; Asia 393.3 ± 109.3 M g ha −1 ). Pan‐tropical variation in density of large trees and AGB was associated with soil coarseness (negative), soil fertility (positive), community wood density (positive) and dominance of wind dispersed species (positive), temperature in the coldest month (negative), temperature in the warmest month (negative) and rainfall in the wettest month (positive), but results were not always consistent among continents. Main conclusions Density of large trees and AGB were significantly associated with climatic variables, indicating that climate change will affect tropical forest biomass storage. Species trait composition will interact with these future biomass changes as they are also affected by a warmer climate. Given the importance of large trees for variation in AGB across the tropics, and their sensitivity to climate change, we emphasize the need for in‐depth analyses of the community dynamics of large trees.
1
Paper
Citation450
0
Save
0

Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale

Kyle Cavanaugh et al.Jan 14, 2014
Abstract Aim We examined (1) the relationships between aboveground tropical forest C storage, biodiversity and environmental drivers and (2) how these relationships inform theory concerning ecosystem function and biodiversity. Experiments have shown that there is a positive relationship between biodiversity and ecosystem functioning, but intense debate exists on the underlying mechanisms. While some argue that mechanisms such as niche complementarity increase ecosystem function, others argue that these relationships are a selection effect. Location Eleven tropical forests in the A mericas, A frica and A sia. Methods We analysed the correlates of biodiversity and carbon storage in tropical forests using data from 59 1‐ha tree plots from a standardized global tropical forest biodiversity‐monitoring network. We examined taxonomic and functional diversity, aboveground C storage and environmental variables in order to determine the relationships between biodiversity and carbon storage in natural (non‐plantation) tropical forests. Results We found that aboveground C storage in tropical forests increased with both taxonomic diversity and functional dominance, specifically the dominance of genera with large maximum diameters, after potential environmental drivers were accounted for (final model R 2 = 0.38, P < 0.001). Main conclusions Our results suggest that niche complementarity and the selection effect are not mutually exclusive: they both play a role in structuring tropical forests. While previous studies have documented relationships between diversity and C storage, these have largely been conducted on small scales in biomes that are relatively species poor compared with tropical forests (e.g. grasslands and temperate or boreal forests). Our results demonstrate that these positive biodiversity–ecosystem functioning relationships are also present in hyperdiverse systems on spatial scales relevant to conservation and management. This insight can be used to inform the conservation and management of tropical forests, which play a critical role in the global carbon cycle and are some of the biologically richest ecosystems on the planet.
0
Citation188
0
Save
4

Consistent patterns of common species across tropical tree communities

Declan Cooper et al.Jan 10, 2024
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
4
Paper
Citation4
1
Save