Discovering hidden pattern from imbalanced data is a critical issue in various real-world applications. Existing classification methods usually suffer from the limitation of data especially for minority classes, and result in unstable prediction and low performance. In this paper, a deep generative classifier is proposed to mitigate this issue via both model perturbation and data perturbation. Specially, the proposed generative classifier is derived from a deep latent variable model where two variables are involved. One variable is to capture the essential information of the original data, denoted as latent codes, which are represented by a probability distribution rather than a single fixed value. The learnt distribution aims to enforce the uncertainty of model and implement model perturbation, thus, lead to stable predictions. The other variable is a prior to latent codes so that the codes are restricted to lie on components in Gaussian Mixture Model. As a confounder affecting generative processes of data (feature/label), the latent variables are supposed to capture the discriminative latent distribution and implement data perturbation. Extensive experiments have been conducted on widely-used real imbalanced image datasets. Experimental results demonstrate the superiority of our proposed model by comparing with popular imbalanced classification baselines on imbalance classification task.