HS
Haosen Shi
Author with expertise in Optical Frequency Combs and Ultrafast Lasers
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
216
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement

Haosen Shi et al.Dec 1, 2018
Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to high-precision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.
0

Timing Jitter of the Dual-Comb Mode-Locked Laser: A Quantum Origin and the Ultimate Effect on High-Speed Time- and Frequency-Domain Metrology

Haosen Shi et al.Sep 1, 2018
We study on the timing jitter characteristics of a passively mode-locked dual-wavelength dual-comb Er-fiber laser that generates two femtosecond optical frequency combs with an offset repetition rate in a shared cavity. The relative timing jitter is characterized directly in the time domain with tens of attoseconds precision by utilizing the intrinsic asynchronous optical sampling process between the two laser beams. This sensitive measurement reveals an amplified spontaneous emission (ASE) noise dominated random walk of the relative pulse timing, which has not been observed before in a dual-comb laser. The quantum-limited relative timing jitter behavior shows that the common-mode noise suppression based on a shared cavity does not apply to quantum noise. We further conduct a time-of-flight ranging experiment and a Fourier-transform spectroscopy simulation based on this dual-comb laser, showing that the quantum-limited relative timing jitter sets an ultimate limit on the reachable performance in time- and frequency-domain dual-comb applications particularly when the high acquisition rate is desired.
1

Reduction of Moving Target Time-of-Flight Measurement Uncertainty in Femtosecond Laser Ranging by Singular Spectrum Analysis Based Filtering

Hui Cao et al.Sep 12, 2018
Femtosecond laser ranging has drawn great interest in recent years, particularly based on an asynchronous optical sampling implementation where a pair of femtosecond lasers are used. High precision absolute ranging either relies on tightly-phase-locked optical frequency combs (a dual-comb setup) or multiple averaging of the measurements from two free-running femtosecond lasers. The former technique is too complicated for practical applications, while the latter technique does not apply to moving targets. In this report, we propose a new route to utilizing a powerful singular spectrum analysis (SSA) filtering method to improve femtosecond laser ranging precision for moving targets with acceleration. The SSA method is capable of separating complex patterns in signals without a priori knowledge of the dynamical model. Here, we utilize the basic SSA filter to extract the target trajectory in the presence of measurement noise both in numerical simulation and in the absolute ranging experiment based on a pair of free-running femtosecond lasers. The experimentally-achieved absolute ranging uncertainty of a moving target is well below 110 nm at a 200-Hz update rate by applying the basic SSA filter. This method paves the way to the practical applications of femtosecond absolute ranging for dynamic objects.