IR
Ian Richardson
Author with expertise in Geopolymer and Alternative Cementitious Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(25% Open Access)
Cited by:
4,009
h-index:
37
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume

Ian RichardsonJul 10, 2004
The purpose of this article is to discuss the applicability of the tobermorite–jennite (T/J) and tobermorite–‘solid-solution’ calcium hydroxide (T/CH) viewpoints for the nanostructure of C-S-H present in real cement pastes. The discussion is facilitated by a consideration of the author's 1992 model, which includes formulations for both structural viewpoints; its relationship to other recent models is outlined. The structural details of the model are clearly illustrated with a number of schematic diagrams. Experimental observations on the nature of C-S-H present in a diverse range of cementitious systems are considered. In some systems, the data can only be accounted for on the T/CH structural viewpoint, whilst in others, both the T/CH and T/J viewpoints could apply. New data from transmission electron microscopy (TEM) are presented. The ‘inner product’ (Ip) C-S-H in relatively large grains of C3S or alite appears to consist of small globular particles, which are ≈4–8 nm in size in pastes hydrated at 20 °C but smaller at elevated temperatures, ≈3–4 nm. Fibrils of ‘outer product’ (Op) C-S-H in C3S or β-C2S pastes appear to consist of aggregations of long thin particles that are about 3 nm in their smallest dimension and of variable length, ranging from a few nanometers to many tens of nanometers. The small size of these particles of C-S-H is likely to result in significant edge effects, which would seem to offer a reasonable explanation for the persistence of Q0(H) species. This would also explain why there is more Q0(H) at elevated temperatures, where the particles seem to be smaller, and apparently less in KOH-activated pastes, where the C-S-H has foil-like morphology. In blended cements, a reduction in the mean Ca/Si ratio of the C-S-H results in a change from fibrillar to a crumpled-foil morphology, which suggests strongly that as the Ca/Si ratio is reduced, a transition occurs from essentially one-dimensional growth of the C-S-H particles to two-dimensional; i.e., long thin particles to foils. Foil-like morphology is associated with T-based structure. The C-S-H present in small fully hydrated alite grains, which has high Ca/Si ratio, contains a less dense product with substantial porosity; its morphology is quite similar to the fine foil-like Op C-S-H that forms in water-activated neat slag pastes, which has a low Ca/Si ratio. It is thus plausible that the C-S-H in small alite grains is essentially T-based (and largely dimeric). Since entirely T-based C-S-H is likely to have different properties to C-S-H consisting largely of J-based structure, it is possible that the C-S-H in small fully reacted grains will have different properties to the C-S-H formed elsewhere in a paste; this could have important implications.
0
Paper
Citation901
0
Save
0

The nature of C-S-H in hardened cements

Ian RichardsonAug 1, 1999
Calcium silicate hydrates (C-S-H) are the main binding phases in all Portland cement-based systems. This paper considers the morphology, composition, and nanostructure of C-S-H in a range of hardened cements. Inner product (Ip) C-S-H present in larger Portland cement grains typically has a fine-scale and homogeneous morphology with pores somewhat under 10 nm in diameter. Ip from larger slag grains also displays this morphology, but is chemically distinct in having high content of Mg and Al. The hydrated remains of small particles—whether of Portland cement, slag or fly ash—contain a less dense product with substantial porosity surrounded by a zone of relatively dense C-S-H; this has implications for the analysis of porosity and pore-size distributions on backscattered electron images. In cement-slag blends, the fibrillar morphology of outer product (Op) C-S-H is gradually replaced by a foil-like morphology as the slag loading is increased. It seems likely that this change in morphology is largely responsible for the improved durability performance possible with slag-containing systems. The Ca/Si ratio of C-S-H in neat Portland cement pastes varies from ∼1.2 to ∼2.3 with a mean of ∼1.75. The Ca/(Si + Al) ratio of C-S-H in water activated cement-slag pastes (0–100% slag) varies from ∼0.7 to ∼2.4; these limits are consistent with dreierkette-based models for the structure of C-S-H. Al substitutes for Si in C-S-H only in the “bridging” tetrahedra of dreierkette chains; this is true for a range of systems, including blends of Portland cement with slag, fly ash, and metakaolin. These data support Richardson and Groves' general model for substituted C-S-H phases. The bonding of C-S-H to other products of hydration is generally good.
0
Paper
Citation885
0
Save
0

Model structures for C-(A)-S-H(I)

Ian RichardsonNov 7, 2014
C-(A)-S-H(I) is a calcium silicate hydrate that is studied extensively as a model for the main binding phase in concrete. It is a structurally imperfect form of 14 Å tobermorite that has variable composition and length of (alumino)silicate anions. New structural-chemical formulae are presented for single- and double-chain tobermorite-based phases and equations are provided that can be used to calculate a number of useful quantities from (29)Si NMR data. It is shown that there are no interlayer calcium ions when the silicate chains are of infinite length and that one is added for each tetrahedral `bridging' site that is vacant. Preparations that have Ca/Si greater than about 1.4 include an intermixed Ca-rich phase. It is not possible to generate a structural model for a dimer that is crystal-chemically consistent with known calcium silicate hydrates if the starting structure is an orthotobermorite, i.e. of the type that has been used in all previous studies. Crystal-chemically plausible models are developed that are based instead on clinotobermorite. A number of models that represent different mean chain lengths are developed using crystal-chemical and geometrical reasoning. The models account for experimental observations, including variations in Ca/Si, H2O/Si, (alumino)silicate anion structure and layer spacing.