YS
Yongsoo Song
Author with expertise in Advanced Cryptographic Schemes and Protocols
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,645
h-index:
16
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Homomorphic Encryption for Arithmetic of Approximate Numbers

Jung Cheon et al.Jan 1, 2017
We suggest a method to construct a homomorphic encryption scheme for approximate arithmetic. It supports an approximate addition and multiplication of encrypted messages, together with a new rescaling procedure for managing the magnitude of plaintext. This procedure truncates a ciphertext into a smaller modulus, which leads to rounding of plaintext. The main idea is to add a noise following significant figures which contain a main message. This noise is originally added to the plaintext for security, but considered to be a part of error occurring during approximate computations that is reduced along with plaintext by rescaling. As a result, our decryption structure outputs an approximate value of plaintext with a predetermined precision. We also propose a new batching technique for a RLWE-based construction. A plaintext polynomial is an element of a cyclotomic ring of characteristic zero and it is mapped to a message vector of complex numbers via complex canonical embedding map, which is an isometric ring homomorphism. This transformation does not blow up the size of errors, therefore enables us to preserve the precision of plaintext after encoding. In our construction, the bit size of ciphertext modulus grows linearly with the depth of the circuit being evaluated due to rescaling procedure, while all the previous works either require an exponentially large size of modulus or expensive computations such as bootstrapping or bit extraction. One important feature of our method is that the precision loss during evaluation is bounded by the depth of a circuit and it exceeds at most one more bit compared to unencrypted approximate arithmetic such as floating-point operations. In addition to the basic approximate circuits, we show that our scheme can be applied to the efficient evaluation of transcendental functions such as multiplicative inverse, exponential function, logistic function and discrete Fourier transform.
0

Secure Outsourced Matrix Computation and Application to Neural Networks

Xiaoqian Jiang et al.Oct 15, 2018
Homomorphic Encryption (HE) is a powerful cryptographic primitive to address privacy and security issues in outsourcing computation on sensitive data to an untrusted computation environment. Comparing to secure Multi-Party Computation (MPC), HE has advantages in supporting non-interactive operations and saving on communication costs. However, it has not come up with an optimal solution for modern learning frameworks, partially due to a lack of efficient matrix computation mechanisms. In this work, we present a practical solution to encrypt a matrix homomorphically and perform arithmetic operations on encrypted matrices. Our solution includes a novel matrix encoding method and an efficient evaluation strategy for basic matrix operations such as addition, multiplication, and transposition. We also explain how to encrypt more than one matrix in a single ciphertext, yielding better amortized performance. Our solution is generic in the sense that it can be applied to most of the existing HE schemes. It also achieves reasonable performance for practical use; for example, our implementation takes 9.21 seconds to multiply two encrypted square matrices of order 64 and 2.56 seconds to transpose a square matrix of order 64. Our secure matrix computation mechanism has a wide applicability to our new framework E2DM, which stands for encrypted data and encrypted model. To the best of our knowledge, this is the first work that supports secure evaluation of the prediction phase based on both encrypted data and encrypted model, whereas previous work only supported applying a plain model to encrypted data. As a benchmark, we report an experimental result to classify handwritten images using convolutional neural networks (CNN). Our implementation on the MNIST dataset takes 28.59 seconds to compute ten likelihoods of 64 input images simultaneously, yielding an amortized rate of 0.45 seconds per image.
0

Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation

Miran Kim et al.Apr 17, 2018
Learning a model without accessing raw data has been an intriguing idea to security and machine learning researchers for years. In an ideal setting, we want to encrypt sensitive data to store them on a commercial cloud and run certain analyses without ever decrypting the data to preserve privacy. Homomorphic encryption technique is a promising candidate for secure data outsourcing, but it is a very challenging task to support real-world machine learning tasks. Existing frameworks can only handle simplified cases with low-degree polynomials such as linear means classifier and linear discriminative analysis.The goal of this study is to provide a practical support to the mainstream learning models (eg, logistic regression).We adapted a novel homomorphic encryption scheme optimized for real numbers computation. We devised (1) the least squares approximation of the logistic function for accuracy and efficiency (ie, reduce computation cost) and (2) new packing and parallelization techniques.Using real-world datasets, we evaluated the performance of our model and demonstrated its feasibility in speed and memory consumption. For example, it took approximately 116 minutes to obtain the training model from the homomorphically encrypted Edinburgh dataset. In addition, it gives fairly accurate predictions on the testing dataset.We present the first homomorphically encrypted logistic regression outsourcing model based on the critical observation that the precision loss of classification models is sufficiently small so that the decision plan stays still.
1

A Full RNS Variant of Approximate Homomorphic Encryption

Jung Cheon et al.Jan 1, 2019
The technology of Homomorphic Encryption (HE) has improved rapidly in a few years. The newest HE libraries are efficient enough to use in practical applications. For example, Cheon et al. (ASIACRYPT’17) proposed an HE scheme with support for arithmetic of approximate numbers. An implementation of this scheme shows the best performance in computation over the real numbers. However, its implementation could not employ a core optimization technique based on the Residue Number System (RNS) decomposition and the Number Theoretic Transformation (NTT). In this paper, we present a variant of approximate homomorphic encryption which is optimal for implementation on standard computer system. We first introduce a new structure of ciphertext modulus which allows us to use both the RNS decomposition of cyclotomic polynomials and the NTT conversion on each of the RNS components. We also suggest new approximate modulus switching procedures without any RNS composition. Compared to previous exact algorithms requiring multi-precision arithmetic, our algorithms can be performed by using only word size (64-bit) operations. Our scheme achieves a significant performance gain from its full RNS implementation. For example, compared to the earlier implementation, our implementation showed speed-ups 17.3, 6.4, and 8.3 times for decryption, constant multiplication, and homomorphic multiplication, respectively, when the dimension of a cyclotomic ring is 32768. We also give experimental result for evaluations of some advanced circuits used in machine learning or statistical analysis. Finally, we demonstrate the practicability of our library by applying to machine learning algorithm. For example, our single core implementation takes 1.8 min to build a logistic regression model from encrypted data when the dataset consists of 575 samples, compared to the previous best result 3.5 min using four cores.
0

Security Guidelines for Implementing Homomorphic Encryption

Jean-Philippe Bossuat et al.Jan 13, 2025
Fully Homomorphic Encryption (FHE) is a cryptographic primitive that allows performing arbitrary operations on encrypted data. Since the conception of the idea in [RAD78], it has been considered a holy grail of cryptography. After the first construction in 2009 [Gen09], it has evolved to become a practical primitive with strong security guarantees. Most modern constructions are based on well-known lattice problems such as Learning With Errors (LWE). Besides its academic appeal, in recent years FHE has also attracted significant attention from industry, thanks to its applicability to a considerable number of real-world use-cases. An upcoming standardization effort by ISO/IEC aims to support the wider adoption of these techniques. However, one of the main challenges that standards bodies, developers, and end users usually encounter is establishing parameters. This is particularly hard in the case of FHE because the parameters are not only related to the security level of the system, but also to the type of operations that the system is able to handle. In this paper we provide examples of parameter sets for LWE targeting particular security levels, that can be used in the context of FHE constructions. We also give examples of complete FHE parameter sets, including the parameters relevant for correctness and performance, alongside those relevant for security. As an additional contribution, we survey the parameter selection support offered in open-source FHE libraries.