VU
V. Umansky
Author with expertise in Semiconductor Spintronics and Quantum Computing
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
5,528
h-index:
62
/
i10-index:
149
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Direct observation of a fractional charge

R. de-Picciotto et al.Sep 1, 1997
Since Millikan's famous oil-drop experiments1, it has been well known that electrical charge is quantized in units of the charge of an electron, e. For this reason, the theoretical prediction2,3 by Laughlin of the existence of fractionally charged ‘quasiparticles’—proposed as an explanation for the fractional quantum Hall (FQH) effect—is very counterintuitive. The FQH effect is a phenomenon observed in the conduction properties of a two-dimensional electron gas subjected to a strong perpendicular magnetic field. This effect results from the strong interaction between electrons, brought about by the magnetic field, giving rise to the aforementioned fractionally charged quasiparticles which carry the current. Here we report the direct observation of these counterintuitive entities by using measurements of quantum shot noise. Quantum shot noise results from the discreteness of the current-carrying charges and so is proportional to both the charge of the quasiparticles and the average current. Our measurements of quantum shot noise show unambiguously that current in a two-dimensional electron gas in the FQH regime is carried by fractional charges—e/3 in the present case—in agreement with Laughlin's prediction.
0

Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures

R. Mani et al.Dec 1, 2002
The observation of vanishing electrical resistance in condensed matter has led to the discovery of new phenomena such as, for example, superconductivity, where a zero-resistance state can be detected in a metal below a transition temperature T(c) (ref. 1). More recently, quantum Hall effects were discovered from investigations of zero-resistance states at low temperatures and high magnetic fields in two-dimensional electron systems (2DESs). In quantum Hall systems and superconductors, zero-resistance states often coincide with the appearance of a gap in the energy spectrum. Here we report the observation of zero-resistance states and energy gaps in a surprising setting: ultrahigh-mobility GaAs/AlGaAs heterostructures that contain a 2DES exhibit vanishing diagonal resistance without Hall resistance quantization at low temperatures and low magnetic fields when the specimen is subjected to electromagnetic wave excitation. Zero-resistance-states occur about magnetic fields B = 4/5 Bf and B = 4/9 Bf, where Bf = 2pifm*/e,m* is the electron mass, e is the electron charge, and f is the electromagnetic-wave frequency. Activated transport measurements on the resistance minima also indicate an energy gap at the Fermi level. The results suggest an unexpected radiation-induced, electronic-state-transition in the GaAs/AlGaAs 2DES.
0

Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs

Hendrik Bluhm et al.Dec 12, 2010
Electron spins in semiconductor structures are quantum bits with good prospects, but the information stored in the spin states tends to degrade quickly owing to interactions with nuclei in the host material. A study of GaAs quantum dots now provides a fuller understanding of this memory loss and how it can be suppressed. Quantum-memory times exceeding 200 μs are demonstrated, two orders of magnitude longer than previously reported for this system. Qubits, the quantum mechanical bits required for quantum computing, must retain their quantum states for times long enough to allow the information contained in them to be processed. In many types of electron-spin qubits, the primary source of information loss is decoherence due to the interaction with nuclear spins of the host lattice. For electrons in gate-defined GaAs quantum dots, spin-echo measurements have revealed coherence times of about 1 μs at magnetic fields below 100 mT (refs 1, 2). Here, we show that coherence in such devices can survive much longer, and provide a detailed understanding of the measured nuclear-spin-induced decoherence. At fields above a few hundred millitesla, the coherence time measured using a single-pulse spin echo is 30 μs. At lower fields, the echo first collapses, but then revives at times determined by the relative Larmor precession of different nuclear species. This behaviour was recently predicted3,4, and can, as we show, be quantitatively accounted for by a semiclassical model for the dynamics of electron and nuclear spins. Using a multiple-pulse Carr–Purcell–Meiboom–Gillecho sequence, the decoherence time can be extended to more than 200 μs, an improvement by two orders of magnitude compared with previous measurements1,2,5.
0

Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization

Sandra Foletti et al.Oct 11, 2009
One fundamental requirement for quantum computation is to perform universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here we show that by subjecting each electron spin to a magnetic field of different magnitude we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic field gradient of several hundred milliTesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single and potentially multiple qubit operations with gate times that approach the threshold required for quantum error correction.
0

Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state

M. Dolev et al.Apr 1, 2008
The fractional quantum Hall effect, where plateaus in the Hall resistance at values of h/ν e2 coexist with zeros in the longitudinal resistance, results from electron correlations in two dimensions under a strong magnetic field. (Here h is Planck's constant, ν the filling factor and e the electron charge.) Current flows along the sample edges and is carried by charged excitations (quasiparticles) whose charge is a fraction of the electron charge. Although earlier research concentrated on odd denominator fractional values of ν, the observation of the even denominator ν = 5/2 state sparked much interest. This state is conjectured to be characterized by quasiparticles of charge e/4, whose statistics are 'non-abelian'—in other words, interchanging two quasiparticles may modify the state of the system into a different one, rather than just adding a phase as is the case for fermions or bosons. As such, these quasiparticles may be useful for the construction of a topological quantum computer. Here we report data on shot noise generated by partitioning edge currents in the ν = 5/2 state, consistent with the charge of the quasiparticle being e/4, and inconsistent with other possible values, such as e/2 and e. Although this finding does not prove the non-abelian nature of the ν = 5/2 state, it is the first step towards a full understanding of these new fractional charges. A quantum computer relies on 'qubits' (or quantum bits) which can be in a quantum state that implies the qubit is both '0' and '1' at the same time. But for conventional qubit designs, typically based on a single particle such as an electron or photon, these quantum states are vulnerable to disturbances and can be easily lost. There is a hypothetical alternative: the topological qubit, which would hold information as a series of 'braids' formed of two-dimensional quasiparticles. This new form of computing comes a step closer with the publication of compelling evidence for the existence of 'e/4' quasiparticles of the type that could transform topological quantum computers from the hypothetical to the proof-of-principle stage. In a News Feature, Liesbeth Venema explains some of the background to this exciting field. This paper reports data of shot noise generated by the 5/2 fractional state in an ultraclean two-dimensional electron gas that compellingly points in the direction of the e/4 quasiparticles. It is believed that this observation is a first step towards understanding new fractional charges.
Load More