A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
WL
Weiqi Lu
Author with expertise in Optical Fiber Communication Technologies
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
2
h-index:
3
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Weight-adaptive joint mixed-precision quantization and pruning for neural network-based equalization in short-reach direct detection links

Zhaopeng Xu et al.May 28, 2024
Neural network (NN)-based equalizers have been widely applied for dealing with nonlinear impairments in intensity-modulated direct detection (IM/DD) systems due to their excellent performance. However, the computational complexity (CC) is a major concern that limits the real-time application of NN-based receivers. In this Letter, we propose, to our knowledge, a novel weight-adaptive joint mixed-precision quantization and pruning approach to reduce the CC of NN-based equalizers, where only integer arithmetic is taken into account instead of floating-point operations. The NN connections are either directly cutoff or represented by a proper number of quantization bits by weight partitioning, leading to a hybrid compressed sparse network that computes much faster and consumes less hardware resources. The proposed approach is verified in a 50-Gb/s 25-km pulse amplitude modulation (PAM)-4 IM/DD link using a directly modulated laser (DML) in the C-band. Compared with the traditional fully connected NN-based equalizer operated with standard floating-point arithmetic, about 80% memory can be saved at a minimum network size without degrading the system performance. Quantization is also shown to be more suitable to over-parameterized NN-based equalizers compared with NNs selected at a minimum size.