MK
Myung Kim
Author with expertise in Natural Language Processing
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
0
h-index:
0
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Vectorizing string entries for data processing on tables: when are larger language models better?

Léo Grinsztajn et al.Jan 1, 2023
There are increasingly efficient data processing pipelines that work on vectors of numbers, for instance most machine learning models, or vector databases for fast similarity search. These require converting the data to numbers. While this conversion is easy for simple numerical and categorical entries, databases are strife with text entries, such as names or descriptions. In the age of large language models, what's the best strategies to vectorize tables entries, baring in mind that larger models entail more operational complexity? We study the benefits of language models in 14 analytical tasks on tables while varying the training size, as well as for a fuzzy join benchmark. We introduce a simple characterization of a column that reveals two settings: 1) a dirty categories setting, where strings share much similarities across entries, and conversely 2) a diverse entries setting. For dirty categories, pretrained language models bring little-to-no benefit compared to simpler string models. For diverse entries, we show that larger language models improve data processing. For these we investigate the complexity-performance tradeoffs and show that they reflect those of classic text embedding: larger models tend to perform better, but it is useful to fine tune them for embedding purposes.
0

CARTE: Pretraining and Transfer for Tabular Learning

Myung Kim et al.Feb 26, 2024
Pretrained deep-learning models are the go-to solution for images or text. However, for tabular data the standard is still to train tree-based models. Indeed, transfer learning on tables hits the challenge of data integration: finding correspondences, correspondences in the entries (entity matching) where different words may denote the same entity, correspondences across columns (schema matching), which may come in different orders, names... We propose a neural architecture that does not need such correspondences. As a result, we can pretrain it on background data that has not been matched. The architecture -- CARTE for Context Aware Representation of Table Entries -- uses a graph representation of tabular (or relational) data to process tables with different columns, string embedding of entries and columns names to model an open vocabulary, and a graph-attentional network to contextualize entries with column names and neighboring entries. An extensive benchmark shows that CARTE facilitates learning, outperforming a solid set of baselines including the best tree-based models. CARTE also enables joint learning across tables with unmatched columns, enhancing a small table with bigger ones. CARTE opens the door to large pretrained models for tabular data.